A223913 Number of n X 3 0..2 arrays with rows and antidiagonals unimodal and columns nondecreasing.
22, 158, 666, 2111, 5548, 12752, 26494, 50863, 91634, 156682, 256442, 404415, 617720, 917692, 1330526, 1887967, 2628046, 3595862, 4844410, 6435455, 8440452, 10941512, 14032414, 17819663, 22423594, 27979522, 34638938, 42570751, 51962576
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..1..0....0..2..0....1..1..0....2..0..0....0..1..0....0..2..1....0..2..2 ..1..1..0....2..2..2....2..2..1....2..2..2....2..1..0....2..2..1....2..2..2 ..2..1..1....2..2..2....2..2..1....2..2..2....2..1..1....2..2..1....2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223918.
Formula
Empirical: a(n) = (23/360)*n^6 + (23/40)*n^5 + (205/72)*n^4 + (143/24)*n^3 + (364/45)*n^2 + (82/15)*n - 1.
Conjectures from Colin Barker, Aug 24 2018: (Start)
G.f.: x*(22 + 4*x + 22*x^2 - 3*x^3 - 3*x^4 + 5*x^5 - x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
Comments