A223919 Number of 2 X n 0..2 arrays with rows and antidiagonals unimodal and columns nondecreasing.
6, 36, 158, 548, 1600, 4102, 9503, 20299, 40570, 76704, 138348, 239630, 400700, 649642, 1024813, 1577669, 2376142, 3508636, 5088714, 7260552, 10205240, 14148014, 19366507, 26200111, 35060546, 46443736, 60943096, 79264338
Offset: 1
Keywords
Examples
Some solutions for n=3: ..1..2..0....0..0..2....1..0..0....0..0..0....0..1..1....1..2..0....0..1..0 ..1..2..0....0..0..2....1..0..0....1..1..0....0..2..1....1..2..2....1..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223918.
Formula
Empirical: a(n) = (1/10080)*n^8 + (1/504)*n^7 + (1/40)*n^6 + (109/720)*n^5 + (259/480)*n^4 + (173/144)*n^3 + (4877/2520)*n^2 + (481/420)*n + 1.
Conjectures from Colin Barker, Feb 23 2018: (Start)
G.f.: x*(6 - 18*x + 50*x^2 - 82*x^3 + 88*x^4 - 62*x^5 + 29*x^6 - 8*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
Comments