A223921 Number of 4Xn 0..2 arrays with rows and antidiagonals unimodal and columns nondecreasing.
15, 225, 2111, 14123, 74040, 323394, 1226491, 4157102, 12856218, 36834899, 98904313, 251078009, 606789828, 1403779390, 3122765753, 6704628063, 13936852281, 28123662137, 55220811463, 105715542647, 197678421680
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..1..0....0..1..1....0..1..0....0..0..1....0..0..0....0..2..0....0..0..1 ..0..1..0....0..1..1....0..2..0....0..1..2....1..0..0....1..2..0....2..2..1 ..2..1..0....1..1..1....0..2..0....1..1..2....1..0..0....1..2..1....2..2..1 ..2..1..1....1..1..1....0..2..1....1..1..2....1..0..0....2..2..1....2..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/106748928000)*n^16 + (1/2668723200)*n^15 + (29/2335132800)*n^14 + (10013/37362124800)*n^13 + (133979/28740096000)*n^12 + (37333/574801920)*n^11 + (49631/65318400)*n^10 + (1761593/261273600)*n^9 + (219704797/5225472000)*n^8 + (49791911/261273600)*n^7 + (925916249/1437004800)*n^6 + (287406331/179625600)*n^5 + (44691980741/15567552000)*n^4 + (315864449/86486400)*n^3 + (14884357/4324320)*n^2 + (558703/360360)*n + 1
Comments