A223922 Number of 5Xn 0..2 arrays with rows and antidiagonals unimodal and columns nondecreasing.
21, 441, 5548, 48182, 319156, 1721356, 7906972, 31947798, 116289938, 388293504, 1205901516, 3520937666, 9746278721, 25746339006, 65246565981, 159287861727, 375892787585, 859832700375, 1910938878762, 4134527627922, 8723666100444
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0....0..0..0....2..0..0....0..1..0....1..0..0....2..2..1....0..0..1 ..1..2..0....0..0..1....2..0..0....1..1..0....1..0..0....2..2..2....0..0..1 ..1..2..1....0..1..1....2..1..0....2..1..0....1..2..0....2..2..2....0..0..1 ..1..2..2....2..1..1....2..1..0....2..1..0....2..2..2....2..2..2....0..1..1 ..2..2..2....2..2..2....2..1..1....2..2..0....2..2..2....2..2..2....0..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/1379196149760000)*n^20 + (1/27583922995200)*n^19 + (67/43553562624000)*n^18 + (2203/50812489728000)*n^17 + (35813/34871316480000)*n^16 + (4723/232475443200)*n^15 + (2458331/6974263296000)*n^14 + (8083259/1494484992000)*n^13 + (508218079/6897623040000)*n^12 + (34902853/45984153600)*n^11 + (6145973531/1072963584000)*n^10 + (1981076359/59609088000)*n^9 + (981368164559/6538371840000)*n^8 + (7803754241/14944849920)*n^7 + (1568765927873/1120863744000)*n^6 + (533988456371/186810624000)*n^5 + (40563025942379/9262693440000)*n^4 + (15131959121/3087564480)*n^3 + (22082097187/5431826400)*n^2 + (196063237/116396280)*n + 1
Comments