A223923 Number of 6Xn 0..2 arrays with rows and antidiagonals unimodal and columns nondecreasing.
28, 784, 12752, 139925, 1147712, 7526024, 41334135, 196691651, 831996762, 3191126598, 11273703656, 37147879480, 115325935123, 340079259419, 958837466287, 2598467396144, 6797368250655, 17222433541791, 42380526618210
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0....0..0..0....0..2..1....0..1..1....0..0..0....0..1..0....0..2..0 ..0..1..0....2..1..0....1..2..1....0..1..1....0..1..0....0..1..0....0..2..0 ..0..1..2....2..1..0....1..2..1....0..1..1....0..1..0....0..2..2....0..2..0 ..0..1..2....2..1..0....1..2..2....0..1..2....0..1..0....0..2..2....0..2..0 ..0..2..2....2..1..0....2..2..2....0..1..2....1..1..0....1..2..2....0..2..0 ..1..2..2....2..1..0....2..2..2....0..2..2....1..2..1....1..2..2....1..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/35608838483312640000)*n^24 + (1/593480641388544000)*n^23 + (1/11491439984640000)*n^22 + (2153/709596419051520000)*n^21 + (219067/2432902008176640000)*n^20 + (25141/11058645491712000)*n^19 + (7669183/149388719800320000)*n^18 + (2894807/2766457774080000)*n^17 + (345585431/17575143505920000)*n^16 + (19926331/58583811686400)*n^15 + (19845690451/3766102179840000)*n^14 + (29105209667/470762772480000)*n^13 + (9676615094071/17575143505920000)*n^12 + (3447815819587/878757175296000)*n^11 + (1672600520777/75107450880000)*n^10 + (40399178860907/399435079680000)*n^9 + (5902479263543591/16005934264320000)*n^8 + (857508181884829/800296713216000)*n^7 + (1309477651758586831/532197314288640000)*n^6 + (43433412218488139/9855505820160000)*n^5 + (4693314253940149/778066248960000)*n^4 + (1959925243391/320817246750)*n^3 + (12456072565753/2698531355520)*n^2 + (3225389971/1784742960)*n + 1
Comments