A223929 Number of nX4 0..2 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing.
46, 698, 4498, 21334, 86439, 316136, 1065625, 3337831, 9773219, 26903878, 70024867, 173255292, 409514526, 928832014, 2029581476, 4287303027, 8781854785, 17488776976, 33939319272, 64311697250, 119202262153, 216450903569
Offset: 1
Keywords
Examples
Some solutions for n=3 ..2..2..0..0....1..2..0..0....0..2..2..2....0..1..1..0....1..2..1..0 ..0..2..2..1....1..2..2..2....0..0..2..2....0..0..2..1....1..1..2..1 ..0..0..2..2....1..2..2..2....0..0..0..2....0..0..0..2....0..1..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/106748928000)*n^16 + (1/13343616000)*n^15 + (1/116756640)*n^14 + (4003/37362124800)*n^13 + (97199/28740096000)*n^12 + (670871/14370048000)*n^11 + (94057/130636800)*n^10 - (113957/261273600)*n^9 + (565001317/5225472000)*n^8 - (887457691/1306368000)*n^7 + (3190047029/359251200)*n^6 - (36838723231/718502400)*n^5 + (4745796217531/15567552000)*n^4 - (170787179737/162162000)*n^3 + (51300697729/21621600)*n^2 - (74839579/180180)*n - 7017 for n>6
Comments