A223930 Number of nX5 0..2 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing.
86, 1915, 15791, 86439, 386495, 1548633, 5773556, 20277077, 67308910, 211460339, 629882429, 1783655626, 4817110825, 12451066977, 30910052731, 73949198559, 171030335166, 383497912713, 835834876572, 1774757616717, 3678712344867
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..1..1..1..2....0..1..0..0..0....0..2..2..2..2....0..1..1..1..0 ..1..1..1..1..1....1..2..2..1..1....0..1..2..2..2....1..1..1..1..1 ..1..1..1..2..1....2..2..2..2..2....0..0..2..2..2....1..1..1..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/1379196149760000)*n^20 - (1/137919614976000)*n^19 + (331/304874938368000)*n^18 - (23/25406244864000)*n^17 + (22273/34871316480000)*n^16 + (2693/697426329600)*n^15 + (709123/2324754432000)*n^14 + (25469/53374464000)*n^13 + (818015239/6897623040000)*n^12 - (447002537/229920768000)*n^11 + (49691417869/1072963584000)*n^10 - (162095712841/268240896000)*n^9 + (48214267849049/6538371840000)*n^8 - (12967593924557/186810624000)*n^7 + (659685543839627/1120863744000)*n^6 - (379579885964341/93405312000)*n^5 + (71087813774265133/3087564480000)*n^4 - (15162068319635473/154378224000)*n^3 + (1768745631701119/6110804700)*n^2 - (6674903392214/14549535)*n + 130847 for n>9
Comments