A223931 Number of nX6 0..2 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing.
148, 4690, 49646, 316136, 1548633, 6621074, 26250443, 98910688, 356869229, 1233491661, 4078987936, 12893958739, 38971222534, 112766372283, 313016886779, 835552379045, 2150549167905, 5351315229801, 12907390753903, 30251757926890
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0..0..0..0....0..2..1..1..1..0....0..0..0..0..0..0....0..0..2..0..0..0 ..0..1..1..0..0..0....0..2..2..2..2..2....0..1..1..1..1..1....0..1..2..2..0..0 ..0..1..1..1..2..2....0..0..2..2..2..2....0..2..2..1..1..1....0..1..1..2..2..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..141
Formula
Empirical: a(n) = (1/35608838483312640000)*n^24 - (1/989134402314240000)*n^23 + (1/12843374100480000)*n^22 - (6449/4257578514309120000)*n^21 + (21257/304112751022080000)*n^20 - (829363/1216451004088320000)*n^19 + (40421209/896332318801920000)*n^18 - (9123221/16598746644480000)*n^17 + (633266813/17575143505920000)*n^16 - (337664083/599152619520000)*n^15 + (2727091523/144850083840000)*n^14 - (437501744297/941525544960000)*n^13 + (331492439551297/26362715258880000)*n^12 - (779880875442583/2929190584320000)*n^11 + (6466629168070943/1351934115840000)*n^10 - (1887207111269150711/26362715258880000)*n^9 + (1852948610513538961/2000741783040000)*n^8 - (82282526794806272279/8002967132160000)*n^7 + (671840992562382243287/6956827637760000)*n^6 - (3984160216854431049887/5375730447360000)*n^5 + (4404199128820894274957/985550582016000)*n^4 - (7353970133174044661/365018734080)*n^3 + (398286504848891623/6290282880)*n^2 - (651587469103938359/5354228880)*n + 102401506 for n>12
Comments