This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A223938 #29 Dec 12 2022 01:48:48 %S A223938 2,3,4,5,6,13,14,17,30,40,41,51,54,73,121,137,364,446,485,638,925, %T A223938 1382,1478,2211,2726,5581,5678,6424,8524,10649,15990,17174,18685, %U A223938 18889,27461,29523,30677,39641,42038,58566,71380,72781,82493 %N A223938 Numbers n such that the trinomial x^n-x-1 is irreducible over GF(3). %C A223938 Any subsequent terms are > 10^5. - _Lucas A. Brown_, Dec 11 2022 %t A223938 Reap[ Do[ If[ Factor[x^n - x - 1, Modulus -> 3][[0]] =!= Times, Print[n]; Sow[n]], {n, 2, 3000}]][[2, 1]] (* _Jean-François Alcover_, Apr 03 2013 *) %t A223938 Select[Range[1000], IrreduciblePolynomialQ[x^# - x - 1, Modulus -> 3] &] (* _Robert Price_, Sep 19 2018 *) %o A223938 (Sage) %o A223938 P.<x> = GF(3)[] %o A223938 for n in range(10^6): %o A223938 if (x^n-x-1).is_irreducible(): %o A223938 print(n) %o A223938 (PARI) %o A223938 for (n=1, 10^6, if ( polisirreducible(Mod(1, 3)*(x^n-x-1)), print1(n, ", ") ) ); %Y A223938 Cf. A002475 (n such that x^n-x-1 is irreducible over GF(2)). %K A223938 nonn,more %O A223938 1,1 %A A223938 _Joerg Arndt_, Mar 29 2013 %E A223938 a(35)-a(43) from _Lucas A. Brown_, Dec 11 2022