cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223941 Areas of primitive Heron triangles with two rational triangle medians.

This page as a plain text file.
%I A223941 #20 Feb 16 2025 08:33:19
%S A223941 420,55440,2042040,23931600,75698280,142334216640,1877686881840,
%T A223941 185643608470320,2137147184560080
%N A223941 Areas of primitive Heron triangles with two rational triangle medians.
%C A223941 All terms are divisible by 30.
%C A223941 It is not certain whether other values lie between those given. - _Peter Luschny_ and _Andrey Zabolotskiy_, Apr 08 2024
%H A223941 Ralph H. Buchholz and Randall L. Rathbun, <a href="http://www.jstor.org/stable/2974977">An infinite set of Heron triangles with two rational medians</a>, The American Mathematical Monthly, Vol. 104, No. 2 (Feb., 1997), pp. 107-115.
%H A223941 Andrew N. W. Hone, <a href="https://doi.org/10.1007/s00283-024-10337-2">Heron Triangles and the Hunt for Unicorns</a>, Math. Intelligencer (2024); arXiv:<a href="https://arxiv.org/abs/2401.05581">2401.05581</a> [math.NT], 2024.
%H A223941 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HeronianTriangle.html">Heronian Triangle</a>
%t A223941 (*Brute-force search*)lst = {}; Do[s = (a + b + c)/2; d = Sqrt[s*(s - a)*(s - b)*(s - c)]; If[IntegerQ[d] && Divisible[d, 30] && d > 0, p = {{a, c, b}, {b, c, a}}; t = 0; Do[m = 1/2*Sqrt[2*p[[n, 1]]^2 + 2*p[[n, 2]]^2 - p[[n, 3]]^2]; If[MatchQ[m, _Rational] || IntegerQ[m], t++, Break[]], {n, 2}]; If[t == 2, AppendTo[lst, d]]], {a, 73}, {b, 51}, {c, 26}]; lst
%Y A223941 Cf. A181928.
%Y A223941 A360537 is a subsequence.
%K A223941 hard,more,nonn
%O A223941 1,1
%A A223941 _Arkadiusz Wesolowski_, Mar 29 2013
%E A223941 a(7)-a(9) from Hone (2024) added by _Andrey Zabolotskiy_, Apr 06 2024