A223942 Least prime q such that (x^{p_n}-1)/(x-1) is irreducible modulo q, where p_n is the n-th prime.
2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 7, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 11, 3, 3, 2, 3, 2, 2, 7, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 7, 3, 7, 7, 11, 3, 5, 2, 43, 5, 3
Offset: 1
Keywords
Examples
a(9)=5 since f(x)=(x^{23}-1)/(x-1) is irreducible modulo 5, but reducible modulo either of 2 and 3, for, f(x)==(x^{11}+x^9+x^7+x^6+x^5+x+1) *(x^{11}+x^{10}+x^6+x^5+x^4+x^2+1) (mod 2) and f(x)==(x^{11}-x^8-x^6+x^4+x^3-x^2-x-1) *(x^{11}+x^{10}+x^9-x^8-x^7+x^5+x^3-1) (mod 3).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..450
Programs
-
Mathematica
Do[Do[If[IrreduciblePolynomialQ[Sum[x^k,{k,0,Prime[n]-1}],Modulus->Prime[k]]==True,Print[n," ",Prime[k]];Goto[aa]],{k,1,PrimePi[Sqrt[7*Prime[n]]]}]; Print[n," ",counterexample];Label[aa];Continue,{n,1,100}]
Comments