cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A223957 Number of nX4 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

35, 805, 12311, 176893, 2575955, 37844037, 559416917, 8299429418, 123370738379, 1835707326614, 27327510542054, 406907786331737, 6059551623581467, 90242115362238750, 1343972755503334184, 20016039213440972353
Offset: 1

Views

Author

R. H. Hardin Mar 29 2013

Keywords

Comments

Column 4 of A223961

Examples

			Some solutions for n=3
..0..0..0..2....0..2..2..2....1..2..2..3....0..0..1..1....0..0..1..3
..0..0..1..3....0..1..2..3....0..2..2..3....1..1..3..3....0..1..1..3
..0..1..2..3....0..3..3..3....0..2..2..3....0..3..3..3....0..1..3..3
		

Formula

Empirical: a(n) = 35*a(n-1) -411*a(n-2) +1521*a(n-3) +4495*a(n-4) -33893*a(n-5) -76333*a(n-6) +769422*a(n-7) -657978*a(n-8) -4892638*a(n-9) +11892141*a(n-10) +26545075*a(n-11) -212154687*a(n-12) +180127811*a(n-13) +844199306*a(n-14) -1964869675*a(n-15) -925267902*a(n-16) +18361374116*a(n-17) -28421809002*a(n-18) +14606204778*a(n-19) +43447425250*a(n-20) +45550238994*a(n-21) -206541843216*a(n-22) +420735920152*a(n-23) +123206624124*a(n-24) -263534650788*a(n-25) -263768865528*a(n-26) +1543560996888*a(n-27) +154734998544*a(n-28) -494508716208*a(n-29) -124707094560*a(n-30) +893424774528*a(n-31) +244581703200*a(n-32) +20427292800*a(n-33) +536699520*a(n-34) for n>36

A223956 Number of nX3 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

20, 295, 3471, 41006, 485714, 5777663, 68892600, 822141033, 9813968785, 117159879996, 1398692077165, 16698106010927, 199348287106117, 2379894628461976, 28412070357384947, 339193873130519142
Offset: 1

Views

Author

R. H. Hardin Mar 29 2013

Keywords

Comments

Column 3 of A223961

Examples

			Some solutions for n=3
..1..3..3....0..1..1....0..1..3....2..2..3....1..1..1....0..3..3....0..0..0
..0..2..3....1..1..2....0..2..2....1..3..3....1..2..2....1..3..3....0..0..0
..0..2..2....0..1..2....0..3..3....3..3..3....2..2..3....0..2..3....0..1..1
		

Formula

Empirical: a(n) = 20*a(n-1) -105*a(n-2) +51*a(n-3) +589*a(n-4) +1340*a(n-5) -8833*a(n-6) -2855*a(n-7) +30423*a(n-8) +57774*a(n-9) -140760*a(n-10) -176184*a(n-11) +106272*a(n-12) +544320*a(n-13)

A223958 Number of nX5 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

56, 1876, 36028, 594286, 9779558, 163752797, 2772658693, 47273211674, 809416786834, 13894273785956, 238867008057298, 4110191305837227, 70761275087518799, 1218613301433676245, 20990363391641556709
Offset: 1

Views

Author

R. H. Hardin Mar 29 2013

Keywords

Comments

Column 5 of A223961

Examples

			Some solutions for n=3
..0..0..0..3..3....0..1..1..2..2....0..1..1..1..1....0..0..0..0..3
..0..0..2..3..3....1..2..3..3..3....0..1..1..2..3....0..0..2..3..3
..1..2..3..3..3....1..3..3..3..3....0..1..2..2..2....0..1..1..2..3
		

Formula

Empirical recurrence of order 63 (see link above)

A223959 Number of nX6 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

84, 3906, 92734, 1718057, 30643468, 556027700, 10269723035, 191829887779, 3609049327918, 68212899813271, 1293084011261962, 24559344963113337, 467028467106529258, 8888318851289202078, 169249293097773923431
Offset: 1

Views

Author

R. H. Hardin Mar 29 2013

Keywords

Comments

Column 6 of A223961

Examples

			Some solutions for n=3
..1..1..1..1..1..2....1..2..2..3..3..3....0..0..0..3..3..3....0..1..1..1..1..2
..0..1..1..2..2..2....0..2..3..3..3..3....0..0..2..2..3..3....0..0..1..2..3..3
..0..0..1..3..3..3....1..1..2..3..3..3....1..1..2..2..3..3....0..0..1..3..3..3
		

A223960 Number of nX7 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

120, 7470, 217144, 4500818, 85350934, 1629022329, 31770135236, 629825651180, 12620835427126, 254719515611821, 5165793380135728, 105110696722615853, 2143594088287821599, 43784293043682987873, 895295525455930993505
Offset: 1

Views

Author

R. H. Hardin Mar 29 2013

Keywords

Comments

Column 7 of A223961

Examples

			Some solutions for n=3
..0..0..0..0..2..3..3....0..0..0..0..0..2..2....0..0..0..0..0..1..2
..0..1..1..1..2..3..3....0..0..1..1..2..2..2....0..0..1..2..2..2..3
..0..0..1..1..1..3..3....0..2..2..2..2..2..3....0..0..1..2..2..3..3
		

A223962 Number of 2 X n 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

16, 85, 295, 805, 1876, 3906, 7470, 13365, 22660, 36751, 57421, 86905, 127960, 183940, 258876, 357561, 485640, 649705, 857395, 1117501, 1440076, 1836550, 2319850, 2904525, 3606876, 4445091, 5439385, 6612145, 7988080, 9594376
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2013

Keywords

Comments

Row 2 of A223961.

Examples

			Some solutions for n=3:
..0..0..1....1..2..3....0..0..3....3..3..3....0..0..1....1..1..2....0..0..3
..0..0..3....2..2..3....3..3..3....3..3..3....0..2..3....1..2..3....0..3..3
		

Crossrefs

Cf. A223961.

Formula

Empirical: a(n) = (1/144)*n^6 + (7/48)*n^5 + (157/144)*n^4 + (59/16)*n^3 + (425/72)*n^2 + (25/6)*n + 1.
Conjectures from Colin Barker, Aug 24 2018: (Start)
G.f.: x*(16 - 27*x + 36*x^2 - 35*x^3 + 21*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A223963 Number of 3 X n 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

64, 707, 3471, 12311, 36028, 92734, 217144, 471994, 965172, 1874532, 3482781, 6225291, 10754192, 18022648, 29393806, 46779538, 72814768, 111073890, 166336539, 244910775, 355022580, 507281450, 715232788, 996008770, 1371090364
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2013

Keywords

Comments

Row 3 of A223961.

Examples

			Some solutions for n=3:
..0..0..1....2..2..2....0..0..2....0..0..2....0..2..3....0..1..3....1..2..2
..1..1..1....1..2..2....0..2..3....1..1..1....0..1..3....1..2..3....0..1..3
..0..1..3....1..1..3....3..3..3....1..1..2....0..0..2....1..1..3....0..0..2
		

Crossrefs

Cf. A223961.

Formula

Empirical: a(n) = (1/8640)*n^9 + (1/320)*n^8 + (503/10080)*n^7 + (659/1440)*n^6 + (3013/960)*n^5 + (37141/2880)*n^4 + (106019/2160)*n^3 - (18977/720)*n^2 + (2711/70)*n - 6 for n>2.
Conjectures from Colin Barker, Aug 24 2018: (Start)
G.f.: x*(64 + 67*x - 719*x^2 + 1736*x^3 - 2287*x^4 + 2271*x^5 - 2070*x^6 + 1632*x^7 - 910*x^8 + 311*x^9 - 58*x^10 + 5*x^11) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>12.
(End)

A223964 Number of 4Xn 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

256, 5864, 41006, 176893, 594286, 1718057, 4500818, 10981150, 25334630, 55772240, 117841845, 239976226, 472531867, 902107834, 1673660678, 3023882381, 5330533450, 9183978785, 15489123731, 25608363453, 41559120445, 66283141375
Offset: 1

Views

Author

R. H. Hardin Mar 29 2013

Keywords

Comments

Row 4 of A223961

Examples

			Some solutions for n=3
..0..1..1....1..2..2....0..1..1....0..0..1....0..1..2....0..0..2....0..1..2
..0..2..3....1..2..3....1..1..2....1..3..3....0..3..3....0..2..3....0..3..3
..2..3..3....1..1..3....0..2..2....1..1..3....1..2..3....0..1..2....1..1..3
..2..2..3....0..1..3....0..2..3....0..1..2....1..3..3....1..3..3....0..2..2
		

Formula

Empirical: a(n) = (1/1036800)*n^12 + (1/34560)*n^11 + (4379/7257600)*n^10 + (757/80640)*n^9 + (257687/2419200)*n^8 + (82939/80640)*n^7 + (8187071/1036800)*n^6 + (1661651/34560)*n^5 + (117000427/453600)*n^4 + (10787803/20160)*n^3 - (153061829/50400)*n^2 + (3421969/840)*n + 275 for n>5

A223965 Number of 5 X n 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

1024, 48620, 485714, 2575955, 9779558, 30643468, 85350934, 220335341, 539722230, 1270939682, 2897487924, 6419463692, 13849588776, 29130616029, 59785815715, 119811736276, 234625138625, 449330010578, 842238087946, 1546539992378
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2013

Keywords

Comments

Row 5 of A223961.

Examples

			Some solutions for n=3
..0..0..0....0..0..2....0..0..0....0..0..3....0..0..2....0..0..0....0..0..3
..0..0..0....2..2..3....2..2..2....0..2..3....0..0..0....0..0..0....0..0..0
..1..2..2....0..2..3....1..2..3....1..1..2....0..2..2....0..0..1....0..0..3
..0..2..3....1..2..3....1..1..2....0..2..2....0..0..3....0..2..2....0..1..3
..0..3..3....0..2..2....1..1..3....1..2..2....0..2..3....2..2..2....0..1..2
		

Crossrefs

Cf. A223961.

Formula

Empirical: a(n) = (1/217728000)*n^15 + (1/7257600)*n^14 + (1021/283046400)*n^13 + (89/1267200)*n^12 + (49747/42768000)*n^11 + (114077/7257600)*n^10 + (4197611/21772800)*n^9 + (2072933/1036800)*n^8 + (4176906623/217728000)*n^7 + (25808249/172800)*n^6 + (198423611/194400)*n^5 + (1908980977/453600)*n^4 + (19380549743/4536000)*n^3 - (3498352713/30800)*n^2 + (12988213717/90090)*n + 329692 for n>8.

A223966 Number of 6Xn 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

4096, 403104, 5777663, 37844037, 163752797, 556027700, 1629022329, 4351046624, 10953882109, 26519610433, 62472567689, 144124515790, 326646013571, 728132468716, 1596498777021, 3441674914130, 7290815852670, 15169818503342
Offset: 1

Views

Author

R. H. Hardin Mar 29 2013

Keywords

Comments

Row 6 of A223961

Examples

			Some solutions for n=3
..0..0..0....0..0..2....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..1....0..0..1....0..0..0....0..0..1....0..0..0....0..0..0
..0..1..1....0..1..1....2..2..3....0..0..2....0..2..2....0..0..0....0..0..2
..0..1..3....1..1..2....0..2..2....0..1..2....0..3..3....0..2..2....1..1..3
..0..0..2....0..1..2....0..1..2....0..0..3....2..2..3....1..2..3....1..3..3
..0..1..3....0..2..2....0..2..2....0..1..1....0..2..2....1..2..2....1..2..3
		

Formula

Empirical: a(n) = (1/73156608000)*n^18 + (1/2709504000)*n^17 + (3319/268240896000)*n^16 + (247579/871782912000)*n^15 + (1111849/193729536000)*n^14 + (3684553/35582976000)*n^13 + (658841977/402361344000)*n^12 + (521443357/22353408000)*n^11 + (7665391471/24385536000)*n^10 + (90826901857/24385536000)*n^9 + (333381059779/8128512000)*n^8 + (85061672873/217728000)*n^7 + (319642737999043/100590336000)*n^6 + (118989237432757/5588352000)*n^5 + (107614272658699/1862784000)*n^4 + (891088311042211/9081072000)*n^3 - (51719689062621/11211200)*n^2 + (1774047167507/360360)*n + 34898064 for n>11
Showing 1-10 of 12 results. Next