cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223963 Number of 3 X n 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

64, 707, 3471, 12311, 36028, 92734, 217144, 471994, 965172, 1874532, 3482781, 6225291, 10754192, 18022648, 29393806, 46779538, 72814768, 111073890, 166336539, 244910775, 355022580, 507281450, 715232788, 996008770, 1371090364
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2013

Keywords

Comments

Row 3 of A223961.

Examples

			Some solutions for n=3:
..0..0..1....2..2..2....0..0..2....0..0..2....0..2..3....0..1..3....1..2..2
..1..1..1....1..2..2....0..2..3....1..1..1....0..1..3....1..2..3....0..1..3
..0..1..3....1..1..3....3..3..3....1..1..2....0..0..2....1..1..3....0..0..2
		

Crossrefs

Cf. A223961.

Formula

Empirical: a(n) = (1/8640)*n^9 + (1/320)*n^8 + (503/10080)*n^7 + (659/1440)*n^6 + (3013/960)*n^5 + (37141/2880)*n^4 + (106019/2160)*n^3 - (18977/720)*n^2 + (2711/70)*n - 6 for n>2.
Conjectures from Colin Barker, Aug 24 2018: (Start)
G.f.: x*(64 + 67*x - 719*x^2 + 1736*x^3 - 2287*x^4 + 2271*x^5 - 2070*x^6 + 1632*x^7 - 910*x^8 + 311*x^9 - 58*x^10 + 5*x^11) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>12.
(End)