A223965 Number of 5 X n 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.
1024, 48620, 485714, 2575955, 9779558, 30643468, 85350934, 220335341, 539722230, 1270939682, 2897487924, 6419463692, 13849588776, 29130616029, 59785815715, 119811736276, 234625138625, 449330010578, 842238087946, 1546539992378
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0....0..0..2....0..0..0....0..0..3....0..0..2....0..0..0....0..0..3 ..0..0..0....2..2..3....2..2..2....0..2..3....0..0..0....0..0..0....0..0..0 ..1..2..2....0..2..3....1..2..3....1..1..2....0..2..2....0..0..1....0..0..3 ..0..2..3....1..2..3....1..1..2....0..2..2....0..0..3....0..2..2....0..1..3 ..0..3..3....0..2..2....1..1..3....1..2..2....0..2..3....2..2..2....0..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223961.
Formula
Empirical: a(n) = (1/217728000)*n^15 + (1/7257600)*n^14 + (1021/283046400)*n^13 + (89/1267200)*n^12 + (49747/42768000)*n^11 + (114077/7257600)*n^10 + (4197611/21772800)*n^9 + (2072933/1036800)*n^8 + (4176906623/217728000)*n^7 + (25808249/172800)*n^6 + (198423611/194400)*n^5 + (1908980977/453600)*n^4 + (19380549743/4536000)*n^3 - (3498352713/30800)*n^2 + (12988213717/90090)*n + 329692 for n>8.
Comments