cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223965 Number of 5 X n 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

1024, 48620, 485714, 2575955, 9779558, 30643468, 85350934, 220335341, 539722230, 1270939682, 2897487924, 6419463692, 13849588776, 29130616029, 59785815715, 119811736276, 234625138625, 449330010578, 842238087946, 1546539992378
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2013

Keywords

Comments

Row 5 of A223961.

Examples

			Some solutions for n=3
..0..0..0....0..0..2....0..0..0....0..0..3....0..0..2....0..0..0....0..0..3
..0..0..0....2..2..3....2..2..2....0..2..3....0..0..0....0..0..0....0..0..0
..1..2..2....0..2..3....1..2..3....1..1..2....0..2..2....0..0..1....0..0..3
..0..2..3....1..2..3....1..1..2....0..2..2....0..0..3....0..2..2....0..1..3
..0..3..3....0..2..2....1..1..3....1..2..2....0..2..3....2..2..2....0..1..2
		

Crossrefs

Cf. A223961.

Formula

Empirical: a(n) = (1/217728000)*n^15 + (1/7257600)*n^14 + (1021/283046400)*n^13 + (89/1267200)*n^12 + (49747/42768000)*n^11 + (114077/7257600)*n^10 + (4197611/21772800)*n^9 + (2072933/1036800)*n^8 + (4176906623/217728000)*n^7 + (25808249/172800)*n^6 + (198423611/194400)*n^5 + (1908980977/453600)*n^4 + (19380549743/4536000)*n^3 - (3498352713/30800)*n^2 + (12988213717/90090)*n + 329692 for n>8.