A223966 Number of 6Xn 0..3 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.
4096, 403104, 5777663, 37844037, 163752797, 556027700, 1629022329, 4351046624, 10953882109, 26519610433, 62472567689, 144124515790, 326646013571, 728132468716, 1596498777021, 3441674914130, 7290815852670, 15169818503342
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0....0..0..2....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0 ..0..0..0....0..0..1....0..0..1....0..0..0....0..0..1....0..0..0....0..0..0 ..0..1..1....0..1..1....2..2..3....0..0..2....0..2..2....0..0..0....0..0..2 ..0..1..3....1..1..2....0..2..2....0..1..2....0..3..3....0..2..2....1..1..3 ..0..0..2....0..1..2....0..1..2....0..0..3....2..2..3....1..2..3....1..3..3 ..0..1..3....0..2..2....0..2..2....0..1..1....0..2..2....1..2..2....1..2..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/73156608000)*n^18 + (1/2709504000)*n^17 + (3319/268240896000)*n^16 + (247579/871782912000)*n^15 + (1111849/193729536000)*n^14 + (3684553/35582976000)*n^13 + (658841977/402361344000)*n^12 + (521443357/22353408000)*n^11 + (7665391471/24385536000)*n^10 + (90826901857/24385536000)*n^9 + (333381059779/8128512000)*n^8 + (85061672873/217728000)*n^7 + (319642737999043/100590336000)*n^6 + (118989237432757/5588352000)*n^5 + (107614272658699/1862784000)*n^4 + (891088311042211/9081072000)*n^3 - (51719689062621/11211200)*n^2 + (1774047167507/360360)*n + 34898064 for n>11
Comments