cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A223970 Number of n X 3 0..2 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

22, 484, 9515, 186004, 3628696, 70779056, 1380511272, 26926081924, 525177301935, 10243271456697, 199788923564609, 3896764235253108, 76004070829222317, 1482414237420454682, 28913608801546792225, 563942758255071088641
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2013

Keywords

Comments

Column 3 of A223975.

Examples

			Some solutions for n=3:
..1..1..1....2..1..1....0..1..1....1..2..1....0..0..1....2..0..0....1..1..1
..2..2..1....2..1..0....2..1..1....1..2..2....1..2..2....1..1..1....1..2..2
..2..2..0....1..0..0....0..1..2....1..1..0....0..2..2....2..1..0....1..2..2
		

Crossrefs

Cf. A223975.

Formula

Empirical: a(n) = 22*a(n-1) - 43*a(n-2) - 125*a(n-3) + 283*a(n-4) - 70*a(n-5) - 111*a(n-6) + 45*a(n-7).
Empirical g.f.: x*(22 - 187*x^2 + 236*x^3 + 27*x^4 - 141*x^5 + 45*x^6) / ((1 - x)*(1 - 3*x)*(1 - 18*x - 32*x^2 + 51*x^3 + 17*x^4 - 15*x^5)). - Colin Barker, Aug 25 2018

A223971 Number of nX4 0..2 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

46, 2116, 76092, 2558848, 84988435, 2809740785, 92756321858, 3060966419662, 100999995564503, 3332485315028073, 109953896394879299, 3627869207377692043, 119699463417292189730, 3949414024096794560292, 130308602654739064528903
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 4 of A223975

Examples

			Some solutions for n=3
..0..2..2..2....0..2..0..0....2..1..1..1....0..0..2..0....2..2..1..0
..1..2..1..0....0..2..1..1....1..1..2..2....0..2..1..1....1..1..1..2
..0..0..0..0....0..0..1..2....0..2..2..2....1..1..2..0....1..0..0..0
		

Formula

Empirical: a(n) = 46*a(n-1) -475*a(n-2) +1981*a(n-3) -20047*a(n-4) +170659*a(n-5) -619313*a(n-6) +1472430*a(n-7) -5125985*a(n-8) +14966969*a(n-9) -26289219*a(n-10) +49504177*a(n-11) -100448013*a(n-12) +127366991*a(n-13) -120709682*a(n-14) +121925145*a(n-15) -83316868*a(n-16) +21878656*a(n-17) -230400*a(n-18)

A223972 Number of nX5 0..2 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

86, 7396, 440628, 22935921, 1140963027, 55803232969, 2708281019793, 131014406127439, 6329626912147424, 305632588672082728, 14754359445820013164, 712195518319828970133, 34376429801121343195388
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 5 of A223975

Examples

			Some solutions for n=3
..0..0..2..1..0....0..0..2..2..0....0..0..1..2..1....0..0..0..1..1
..1..2..1..1..0....0..2..2..2..2....1..1..1..1..2....0..0..2..2..2
..0..0..0..1..0....0..0..0..0..0....0..0..2..2..1....0..0..2..2..0
		

Formula

Empirical recurrence of order 43 (see link above)

A223973 Number of nX6 0..2 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

148, 21904, 2026448, 153196498, 10676374380, 715985189481, 47087051658638, 3065213211139220, 198505156112480574, 12821707501426587223, 827061911875686602143, 53312878153050071853965, 3435377864410521923551264
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 6 of A223975

Examples

			Some solutions for n=3
..0..0..2..0..0..0....0..0..2..2..0..0....0..0..2..2..2..0....0..0..1..2..2..0
..0..0..1..2..2..0....0..0..0..0..0..0....0..0..1..0..0..0....0..0..0..0..2..2
..0..0..2..1..1..1....0..0..1..1..1..0....0..0..0..0..0..0....0..0..0..0..1..0
		

Formula

Empirical recurrence of order 91 (see link above)

A223974 Number of nX7 0..2 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

239, 57121, 7829639, 822895397, 76942621022, 6766457318128, 574360426081996, 47758165568891552, 3923597116646870013, 320103299171867245506, 26009282573098001541721, 2108303995165038876541532
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 7 of A223975

Examples

			Some solutions for n=3
..0..0..0..2..2..2..2....0..0..0..2..0..0..0....0..0..0..0..0..2..1
..0..0..0..1..2..2..0....0..0..0..0..0..1..2....0..0..0..0..2..2..0
..0..0..0..0..0..2..2....0..0..0..1..2..0..0....0..0..2..2..2..0..0
		

A223976 Number of 3Xn 0..2 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

27, 729, 9515, 76092, 440628, 2026448, 7829639, 26375691, 79507149, 218578373, 555979549, 1323191288, 2972776392, 6350443334, 12975277251, 25482263325, 48302292951, 88682057873, 158180868607, 274824912452, 466153399196
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Row 3 of A223975

Examples

			Some solutions for n=3
..1..2..0....1..2..2....1..2..0....0..1..2....2..0..0....2..2..0....2..0..0
..1..0..0....0..2..2....2..2..1....0..2..2....1..1..1....0..1..2....2..1..0
..2..1..0....0..1..1....0..2..2....1..2..2....0..1..1....2..0..0....2..2..1
		

Formula

Empirical: a(n) = (5051/239500800)*n^12 + (17911/39916800)*n^11 + (132833/21772800)*n^10 + (35869/725760)*n^9 + (2045741/7257600)*n^8 + (425867/403200)*n^7 + (62493899/21772800)*n^6 + (727483/145152)*n^5 + (33993559/5443200)*n^4 + (2107249/907200)*n^3 + (3822521/831600)*n^2 + (49331/13860)*n + 1

A223977 Number of 4Xn 0..2 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

81, 6561, 186004, 2558848, 22935921, 153196498, 822895397, 3731866676, 14772553616, 52279545002, 168389072033, 500454038667, 1387317570171, 3618413260028, 8942729611918, 21066089007345, 47533740360251
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Row 4 of A223975

Examples

			Some solutions for n=3
..1..0..0....0..0..0....1..1..0....0..1..0....0..0..2....0..2..1....0..2..0
..2..2..1....1..2..2....1..2..0....2..1..0....1..1..2....0..2..0....0..1..1
..1..1..1....1..2..2....1..1..0....0..1..1....1..0..0....0..0..0....2..2..1
..0..1..0....2..1..0....0..2..0....0..1..0....0..2..1....0..2..0....0..0..2
		

Formula

Empirical: a(n) = (456419/5230697472000)*n^16 + (35741/12108096000)*n^15 + (4696759/65383718400)*n^14 + (1960073/1779148800)*n^13 + (31966559/2612736000)*n^12 + (461185847/4790016000)*n^11 + (496257731/914457600)*n^10 + (445395499/203212800)*n^9 + (228272848649/36578304000)*n^8 + (5589292243/435456000)*n^7 + (282633985/14370048)*n^6 + (3122820053/239500800)*n^5 - (91030209653/108972864000)*n^4 - (327561926401/4540536000)*n^3 + (185306939/3439800)*n^2 + (13865993/360360)*n + 7

A223978 Number of 5Xn 0..2 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

243, 59049, 3628696, 84988435, 1140963027, 10676374380, 76942621022, 453969579904, 2284206888340, 10088688214569, 39954771229458, 144202872415543, 480339235745630, 1491693619175208, 4354474074592966
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Row 5 of A223975

Examples

			Some solutions for n=3
..0..0..1....0..0..0....0..0..1....0..0..0....0..0..1....0..0..1....0..0..1
..0..1..1....0..0..2....0..2..0....0..2..0....0..1..0....0..1..2....0..1..0
..0..0..0....1..2..0....0..1..1....2..2..2....2..1..1....0..1..2....2..1..1
..0..0..0....0..2..0....1..1..2....2..1..0....2..2..2....0..2..2....2..2..1
..0..1..0....0..0..1....0..1..1....1..0..0....0..1..1....1..1..1....0..2..1
		

Formula

Empirical: a(n) = (63370093/405483668029440000)*n^20 + (71859847/9357315416064000)*n^19 + (3840596671/12804747411456000)*n^18 + (16093136419/2134124568576000)*n^17 + (89468187533/627683696640000)*n^16 + (124873595783/62768369664000)*n^15 + (2671089252541/125536739328000)*n^14 + (32125296547501/188305108992000)*n^13 + (302581775150461/289700167680000)*n^12 + (44545336450771/9656672256000)*n^11 + (289473882894181/19313344512000)*n^10 + (311624791382747/9656672256000)*n^9 + (1803023416115741/34871316480000)*n^8 + (43416115518617/724250419200)*n^7 + (2936371270324637/47076277248000)*n^6 - (1561630187307499/2615348736000)*n^5 - (2687139777308839/111152321280000)*n^4 - (285271644066077/77189112000)*n^3 + (4647951175288301/586637251200)*n^2 - (79120764337/15519504)*n + 1710 for n>2

A223979 Number of 6Xn 0..2 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

729, 531441, 70779056, 2809740785, 55803232969, 715985189481, 6766457318128, 50783406166411, 317861952928894, 1716630787916775, 8199247742192030, 35287118527617297, 138825002272586304, 505004840634444527
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Row 6 of A223975

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..1....0..0..0....0..0..1....0..0..1....0..0..1....0..0..1....0..0..1
..0..1..1....1..1..1....1..1..0....1..1..0....1..1..0....0..1..0....1..1..1
..0..2..1....0..1..0....0..2..1....0..0..1....1..2..0....0..0..1....0..1..1
..0..1..0....0..2..0....1..1..2....0..1..1....1..2..2....0..1..0....0..1..2
..1..2..1....1..1..2....0..0..1....1..2..1....0..2..0....1..1..1....0..2..0
		

Formula

Empirical polynomial of degree 24 (see link above)

A223980 Number of 7Xn 0..2 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

2187, 4782969, 1380511272, 92756321858, 2708281019793, 47087051658638, 574360426081996, 5392250304954708, 41292036231202766, 268318893714852915, 1522088317195862139, 7698392543196415664, 35283079262827759084
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Row 7 of A223975

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..1....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0
..0..1..0....0..1..1....0..1..0....0..0..1....0..0..0....1..0..0....0..1..0
..0..2..2....2..2..0....1..2..1....1..1..1....2..1..0....0..0..0....2..0..0
..0..2..2....1..1..0....2..2..0....2..1..1....1..1..2....1..2..1....0..0..0
..1..1..0....0..1..2....0..1..2....1..1..2....2..1..1....2..2..1....0..0..0
		

Formula

Empirical polynomial of degree 28 (see link above)
Showing 1-10 of 11 results. Next