A223982 Number of n X 3 0..3 arrays with rows unimodal and columns nondecreasing.
50, 684, 5029, 25410, 99634, 325120, 922768, 2346883, 5462600, 11818092, 24045385, 46430852, 85704412, 152105120, 260790200, 433664645, 701719286, 1107976716, 1711156645, 2590185158, 3849685950, 5626605920, 8098142520, 11491155975
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..2..1....0..3..0....0..1..0....2..2..0....0..1..0....1..2..0....0..0..0 ..0..3..1....0..3..1....2..2..0....3..2..0....0..1..2....2..2..1....0..1..0 ..0..3..1....0..3..1....2..3..2....3..2..2....2..2..3....2..3..3....0..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223987.
Formula
Empirical: a(n) = (353/181440)*n^9 + (5/126)*n^8 + (10571/30240)*n^7 + (251/144)*n^6 + (46793/8640)*n^5 + (1565/144)*n^4 + (159679/11340)*n^3 + (715/63)*n^2 + (6491/1260)*n + 1.
Conjectures from Colin Barker, Aug 25 2018: (Start)
G.f.: x*(50 + 184*x + 439*x^2 - 100*x^3 + 259*x^4 - 210*x^5 + 120*x^6 - 45*x^7 + 10*x^8 - x^9) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)
Comments