cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223989 Number of 4Xn 0..3 arrays with rows unimodal and columns nondecreasing.

This page as a plain text file.
%I A223989 #6 Jul 23 2025 04:46:42
%S A223989 35,1225,25410,358118,3770722,31585056,219861244,1312747586,
%T A223989 6885325482,32313530946,137690265950,539018300034,1957451099304,
%U A223989 6647631120056,21256016741041,64364748455011,185491652223781,510953158157281
%N A223989 Number of 4Xn 0..3 arrays with rows unimodal and columns nondecreasing.
%C A223989 Row 4 of A223987
%H A223989 R. H. Hardin, <a href="/A223989/b223989.txt">Table of n, a(n) for n = 1..210</a>
%F A223989 Empirical: a(n) = (1/2906843957821440000)*n^24 + (11/242236996485120000)*n^23 + (4897/1529252690853888000)*n^22 + (2857/19308746096640000)*n^21 + (973813/198604245565440000)*n^20 + (4751599/38617492193280000)*n^19 + (31125329/12804747411456000)*n^18 + (103519301/2667655710720000)*n^17 + (2190105457/4304116776960000)*n^16 + (4631351591/836911595520000)*n^15 + (151304213363/3012881743872000)*n^14 + (22821847439/59779399680000)*n^13 + (807436276336499/331416991825920000)*n^12 + (2978829718733/228248616960000)*n^11 + (12597307863407/215205838848000)*n^10 + (15260090056063/69742632960000)*n^9 + (21685072444447303/32011868528640000)*n^8 + (72957402495727/42343741440000)*n^7 + (108238697285043737/30411275102208000)*n^6 + (24731243901001117/4223788208640000)*n^5 + (1127736066113539/150849578880000)*n^4 + (8436170802181/1173274502400)*n^3 + (193928573189123/37104806138400)*n^2 + (1070454625/535422888)*n + 1
%e A223989 Some solutions for n=3
%e A223989 ..0..0..0....0..1..0....1..1..2....0..2..1....0..0..0....1..2..0....0..2..0
%e A223989 ..1..1..1....0..1..0....1..3..3....0..2..2....2..3..1....2..3..1....0..2..1
%e A223989 ..1..3..3....0..2..0....2..3..3....0..3..2....2..3..1....2..3..1....0..2..1
%e A223989 ..1..3..3....0..3..2....2..3..3....3..3..3....3..3..2....3..3..1....0..3..1
%K A223989 nonn
%O A223989 1,1
%A A223989 _R. H. Hardin_ Mar 30 2013