A223995 Number of nX4 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.
15, 155, 1144, 7927, 55333, 388598, 2743444, 19437479, 138010718, 981047716, 6977843175, 49645292212, 353262192994, 2513898151334, 17890175634324, 127318180862693, 906089796193803, 6448444001034017, 45892351529878911
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..2..2....0..1..1..1....0..0..0..0....0..0..1..1....0..1..1..2 ..0..1..1..2....1..1..1..2....0..0..2..2....0..0..2..2....0..0..1..2 ..1..1..1..1....0..2..2..2....1..1..1..2....0..2..2..2....0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 15*a(n-1) -69*a(n-2) +66*a(n-3) +226*a(n-4) -172*a(n-5) -1192*a(n-6) +2157*a(n-7) -1714*a(n-8) -2876*a(n-9) +4966*a(n-10) +12095*a(n-11) -17584*a(n-12) +28968*a(n-13) +156*a(n-14) -2874*a(n-15) -2964*a(n-16) +15876*a(n-17) +1008*a(n-18) for n>19
Comments