A223997 Number of nX6 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.
28, 469, 4614, 36845, 281271, 2160036, 16795265, 131782267, 1040869367, 8260503068, 65781844983, 525128814213, 4199218263977, 33618978354499, 269371779362318, 2159531269883408, 17319319103903054, 138936031415524052
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0..1..2..2....0..0..1..1..2..2....0..0..0..0..0..0....0..0..0..1..1..1 ..2..2..2..2..2..2....0..1..1..2..2..2....0..1..1..2..2..2....0..0..0..1..1..2 ..0..2..2..2..2..2....0..1..1..1..2..2....1..2..2..2..2..2....0..0..0..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 28*a(n-1) -300*a(n-2) +1417*a(n-3) -1482*a(n-4) -11436*a(n-5) +31851*a(n-6) +52359*a(n-7) -290782*a(n-8) +153075*a(n-9) +602260*a(n-10) -176604*a(n-11) -1863678*a(n-12) +536713*a(n-13) +8514601*a(n-14) -7251292*a(n-15) -64571700*a(n-16) +163992784*a(n-17) -63488599*a(n-18) +75157211*a(n-19) -574679221*a(n-20) +1117201234*a(n-21) -1103109981*a(n-22) +247796355*a(n-23) -1415805562*a(n-24) +12828520548*a(n-25) -5049431870*a(n-26) +5717879992*a(n-27) +7921013636*a(n-28) +14497424532*a(n-29) -1161322200*a(n-30) +7782865280*a(n-31) +2703305984*a(n-32) +21857003968*a(n-33) +1446146688*a(n-34) +6372675072*a(n-35) -1634756608*a(n-36) +2474711040*a(n-37) -114278400*a(n-38) +967065600*a(n-39) for n>44
Comments