cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A223994 Number of nX3 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

10, 76, 476, 2980, 18672, 117386, 739672, 4664776, 29428242, 185670484, 1171477424, 7391425016, 46636189140, 294251036912, 1856576835280, 11714070469768, 73909919072136, 466334575535548, 2942337620960936
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 3 of A223999

Examples

			Some solutions for n=3
..2..2..2....1..1..2....0..0..0....0..0..2....0..1..1....0..0..0....0..1..1
..2..2..2....1..1..2....0..0..2....1..2..2....1..2..2....0..0..1....0..0..2
..0..2..2....0..2..2....1..1..2....0..1..2....1..2..2....1..1..2....0..0..2
		

Formula

Empirical: a(n) = 10*a(n-1) -24*a(n-2) -2*a(n-3) +30*a(n-4) +96*a(n-5) -150*a(n-6) -108*a(n-7) +48*a(n-8) +270*a(n-9)

A223995 Number of nX4 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

15, 155, 1144, 7927, 55333, 388598, 2743444, 19437479, 138010718, 981047716, 6977843175, 49645292212, 353262192994, 2513898151334, 17890175634324, 127318180862693, 906089796193803, 6448444001034017, 45892351529878911
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 4 of A223999

Examples

			Some solutions for n=3
..0..0..2..2....0..1..1..1....0..0..0..0....0..0..1..1....0..1..1..2
..0..1..1..2....1..1..1..2....0..0..2..2....0..0..2..2....0..0..1..2
..1..1..1..1....0..2..2..2....1..1..1..2....0..2..2..2....0..0..1..1
		

Formula

Empirical: a(n) = 15*a(n-1) -69*a(n-2) +66*a(n-3) +226*a(n-4) -172*a(n-5) -1192*a(n-6) +2157*a(n-7) -1714*a(n-8) -2876*a(n-9) +4966*a(n-10) +12095*a(n-11) -17584*a(n-12) +28968*a(n-13) +156*a(n-14) -2874*a(n-15) -2964*a(n-16) +15876*a(n-17) +1008*a(n-18) for n>19

A223996 Number of nX5 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

21, 281, 2403, 17929, 132119, 984595, 7400832, 55978489, 425257387, 3240026429, 24732295031, 189012200658, 1445524081573, 11059812977060, 84641528773971, 647871404690124, 4959498660501284, 37967742496830194, 290676685330836460
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 5 of A223999

Examples

			Some solutions for n=3
..0..0..0..0..0....0..1..1..1..1....0..0..0..0..0....1..1..1..1..2
..0..0..0..2..2....1..1..1..1..1....0..1..1..1..2....0..2..2..2..2
..1..1..1..1..2....0..1..1..2..2....0..2..2..2..2....2..2..2..2..2
		

Formula

Empirical: a(n) = 21*a(n-1) -155*a(n-2) +405*a(n-3) +365*a(n-4) -2996*a(n-5) -664*a(n-6) +18276*a(n-7) -22433*a(n-8) -2304*a(n-9) -9369*a(n-10) -7644*a(n-11) +222262*a(n-12) +167540*a(n-13) -1508772*a(n-14) +2046821*a(n-15) -1097976*a(n-16) +4265706*a(n-17) -2582500*a(n-18) -941886*a(n-19) -2423080*a(n-20) +19902336*a(n-21) +2548764*a(n-22) +9439760*a(n-23) +1688032*a(n-24) +1035840*a(n-25) -957120*a(n-26) +1996416*a(n-27) -115200*a(n-28) for n>31

A223997 Number of nX6 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

28, 469, 4614, 36845, 281271, 2160036, 16795265, 131782267, 1040869367, 8260503068, 65781844983, 525128814213, 4199218263977, 33618978354499, 269371779362318, 2159531269883408, 17319319103903054, 138936031415524052
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 6 of A223999

Examples

			Some solutions for n=3
..0..0..0..1..2..2....0..0..1..1..2..2....0..0..0..0..0..0....0..0..0..1..1..1
..2..2..2..2..2..2....0..1..1..2..2..2....0..1..1..2..2..2....0..0..0..1..1..2
..0..2..2..2..2..2....0..1..1..1..2..2....1..2..2..2..2..2....0..0..0..1..1..1
		

Formula

Empirical: a(n) = 28*a(n-1) -300*a(n-2) +1417*a(n-3) -1482*a(n-4) -11436*a(n-5) +31851*a(n-6) +52359*a(n-7) -290782*a(n-8) +153075*a(n-9) +602260*a(n-10) -176604*a(n-11) -1863678*a(n-12) +536713*a(n-13) +8514601*a(n-14) -7251292*a(n-15) -64571700*a(n-16) +163992784*a(n-17) -63488599*a(n-18) +75157211*a(n-19) -574679221*a(n-20) +1117201234*a(n-21) -1103109981*a(n-22) +247796355*a(n-23) -1415805562*a(n-24) +12828520548*a(n-25) -5049431870*a(n-26) +5717879992*a(n-27) +7921013636*a(n-28) +14497424532*a(n-29) -1161322200*a(n-30) +7782865280*a(n-31) +2703305984*a(n-32) +21857003968*a(n-33) +1446146688*a(n-34) +6372675072*a(n-35) -1634756608*a(n-36) +2474711040*a(n-37) -114278400*a(n-38) +967065600*a(n-39) for n>44

A223998 Number of nX7 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

36, 736, 8291, 71061, 559188, 4368458, 34534687, 276286000, 2229871293, 18115082917, 147889219961, 1211856739505, 9958518859510, 82010005661441, 676451232895869, 5586333937854878, 46174727441274521, 381916881456838766
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 7 of A223999

Examples

			Some solutions for n=3
..0..0..0..0..0..1..1....0..1..1..1..1..1..1....0..0..0..0..1..1..1
..0..0..0..0..1..1..2....0..0..1..1..1..1..2....0..1..1..1..1..2..2
..1..1..1..2..2..2..2....0..0..1..1..1..2..2....0..0..1..1..1..1..2
		

Formula

Empirical recurrence of order 54 (see link above)

A224000 Number of 2 X n 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

9, 31, 76, 155, 281, 469, 736, 1101, 1585, 2211, 3004, 3991, 5201, 6665, 8416, 10489, 12921, 15751, 19020, 22771, 27049, 31901, 37376, 43525, 50401, 58059, 66556, 75951, 86305, 97681, 110144, 123761, 138601, 154735, 172236, 191179, 211641, 233701
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2013

Keywords

Comments

Row 2 of A223999.

Examples

			Some solutions for n=3:
..0..0..2....0..0..1....1..1..1....0..1..1....1..1..1....0..0..2....1..1..2
..0..0..2....2..2..2....0..1..2....0..1..2....0..1..1....2..2..2....0..2..2
		

Crossrefs

Cf. A223999.

Formula

Empirical: a(n) = (1/12)*n^4 + 1*n^3 + (41/12)*n^2 + (7/2)*n + 1.
Conjectures from Colin Barker, Aug 25 2018: (Start)
G.f.: x*(9 - 14*x + 11*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A224001 Number of 3 X n 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

27, 157, 476, 1144, 2403, 4614, 8291, 14141, 23109, 36428, 55674, 82826, 120331, 171174, 238953, 327959, 443261, 590796, 777464, 1011228, 1301219, 1657846, 2092911, 2619729, 3253253, 4010204, 4909206, 5970926, 7218219, 8676278
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2013

Keywords

Comments

Row 3 of A223999.

Examples

			Some solutions for n=3:
..1..2..2....0..1..2....0..1..1....1..2..2....0..0..0....0..0..2....2..2..2
..0..1..2....1..2..2....0..1..2....1..1..2....0..1..2....0..0..0....2..2..2
..1..1..1....2..2..2....0..1..1....1..1..1....0..1..1....0..1..2....1..2..2
		

Crossrefs

Cf. A223999.

Formula

Empirical: a(n) = (1/144)*n^6 + (5/48)*n^5 + (163/144)*n^4 + (85/16)*n^3 + (895/36)*n^2 - (65/12)*n + 3 for n>2.
Conjectures from Colin Barker, Aug 25 2018: (Start)
G.f.: x*(27 - 32*x - 56*x^2 + 164*x^3 - 159*x^4 + 85*x^5 - 32*x^6 + 9*x^7 - x^8) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>9.
(End)

A224002 Number of 4 X n 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

81, 793, 2980, 7927, 17929, 36845, 71061, 130767, 231730, 397675, 663404, 1078800, 1713877, 2665051, 4062821, 6081063, 8948154, 12960157, 18496312, 26037092, 36185097, 49689073, 67471357, 90659063, 120619338, 158999031, 207769132
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2013

Keywords

Comments

Row 4 of A223999.

Examples

			Some solutions for n=3:
..0..0..1....1..1..1....0..0..1....0..1..1....0..1..2....1..1..1....0..1..1
..0..2..2....1..1..1....0..1..1....1..1..1....0..1..1....1..1..2....1..1..1
..1..1..2....0..1..2....0..0..1....1..2..2....0..0..2....0..2..2....0..1..1
..1..2..2....0..0..1....0..0..0....0..2..2....0..0..1....2..2..2....0..0..1
		

Crossrefs

Cf. A223999.

Formula

Empirical: a(n) = (1/2880)*n^8 + (1/180)*n^7 + (25/288)*n^6 + (169/180)*n^5 + (18649/2880)*n^4 + (4247/90)*n^3 + (2719/16)*n^2 - (6649/30)*n - 17 for n>4.
Conjectures from Colin Barker, Aug 25 2018: (Start)
G.f.: x*(81 + 64*x - 1241*x^2 + 2851*x^3 - 2540*x^4 + 248*x^5 + 1398*x^6 - 1380*x^7 + 796*x^8 - 347*x^9 + 88*x^10 - x^11 - 3*x^12) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>13.
(End)

A224003 Number of 5Xn 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

243, 4004, 18672, 55333, 132119, 281271, 559188, 1063365, 1958634, 3517866, 6183395, 10657414, 18032067, 29972868, 48972482, 78695853, 124442202, 193754586, 297213549, 449457950, 670483363, 987276552, 1435853472, 2063778077
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Row 5 of A223999

Examples

			Some solutions for n=3
..0..2..2....0..0..0....0..0..2....1..1..1....0..2..2....0..0..0....0..0..0
..0..1..2....0..0..1....0..0..0....1..1..1....0..0..2....0..0..2....1..1..2
..0..1..2....0..0..2....0..0..0....1..1..2....0..1..2....1..1..2....0..1..2
..0..1..1....0..2..2....0..1..2....0..2..2....0..0..1....0..1..2....0..0..1
..1..1..2....0..2..2....1..1..1....2..2..2....0..2..2....0..1..1....0..2..2
		

Formula

Empirical: a(n) = (1/86400)*n^10 + (1/5760)*n^9 + (13/3360)*n^8 + (1079/20160)*n^7 + (19031/28800)*n^6 + (35137/5760)*n^5 + (513623/8640)*n^4 + (161053/480)*n^3 + (3838487/2800)*n^2 - (614813/210)*n - 2235 for n>6

A224004 Number of 6Xn 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

729, 20216, 117386, 388598, 984595, 2160036, 4368458, 8412641, 15703623, 28693082, 51589943, 91524689, 160402902, 277798382, 475383309, 803588211, 1341439640, 2210851797, 3597065144, 5777447600, 9161521721, 14345876103
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Row 6 of A223999

Examples

			Some solutions for n=3
..0..1..1....0..0..0....0..0..0....0..0..2....0..0..0....0..0..0....0..0..2
..0..1..2....0..0..2....0..2..2....1..1..2....0..2..2....0..0..0....0..1..1
..0..0..1....0..0..0....0..1..2....1..1..2....1..2..2....0..0..1....1..1..1
..0..2..2....0..0..0....1..1..1....0..1..1....0..1..2....1..1..2....0..2..2
..1..1..2....0..0..2....0..1..1....0..1..2....0..1..1....1..1..1....1..1..2
..1..1..2....1..1..2....2..2..2....1..2..2....0..2..2....0..1..2....0..1..2
		

Formula

Empirical: a(n) = (1/3628800)*n^12 + (1/302400)*n^11 + (419/3628800)*n^10 + (223/120960)*n^9 + (35411/1209600)*n^8 + (20443/50400)*n^7 + (17616857/3628800)*n^6 + (6342323/120960)*n^5 + (821276033/1814400)*n^4 + (103253527/37800)*n^3 + (186412339/16800)*n^2 - (24901729/840)*n - 64275 for n>8
Showing 1-10 of 12 results. Next