A224002 Number of 4 X n 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.
81, 793, 2980, 7927, 17929, 36845, 71061, 130767, 231730, 397675, 663404, 1078800, 1713877, 2665051, 4062821, 6081063, 8948154, 12960157, 18496312, 26037092, 36185097, 49689073, 67471357, 90659063, 120619338, 158999031, 207769132
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..1....1..1..1....0..0..1....0..1..1....0..1..2....1..1..1....0..1..1 ..0..2..2....1..1..1....0..1..1....1..1..1....0..1..1....1..1..2....1..1..1 ..1..1..2....0..1..2....0..0..1....1..2..2....0..0..2....0..2..2....0..1..1 ..1..2..2....0..0..1....0..0..0....0..2..2....0..0..1....2..2..2....0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223999.
Formula
Empirical: a(n) = (1/2880)*n^8 + (1/180)*n^7 + (25/288)*n^6 + (169/180)*n^5 + (18649/2880)*n^4 + (4247/90)*n^3 + (2719/16)*n^2 - (6649/30)*n - 17 for n>4.
Conjectures from Colin Barker, Aug 25 2018: (Start)
G.f.: x*(81 + 64*x - 1241*x^2 + 2851*x^3 - 2540*x^4 + 248*x^5 + 1398*x^6 - 1380*x^7 + 796*x^8 - 347*x^9 + 88*x^10 - x^11 - 3*x^12) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>13.
(End)
Comments