A224003 Number of 5Xn 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.
243, 4004, 18672, 55333, 132119, 281271, 559188, 1063365, 1958634, 3517866, 6183395, 10657414, 18032067, 29972868, 48972482, 78695853, 124442202, 193754586, 297213549, 449457950, 670483363, 987276552, 1435853472, 2063778077
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..2..2....0..0..0....0..0..2....1..1..1....0..2..2....0..0..0....0..0..0 ..0..1..2....0..0..1....0..0..0....1..1..1....0..0..2....0..0..2....1..1..2 ..0..1..2....0..0..2....0..0..0....1..1..2....0..1..2....1..1..2....0..1..2 ..0..1..1....0..2..2....0..1..2....0..2..2....0..0..1....0..1..2....0..0..1 ..1..1..2....0..2..2....1..1..1....2..2..2....0..2..2....0..1..1....0..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/86400)*n^10 + (1/5760)*n^9 + (13/3360)*n^8 + (1079/20160)*n^7 + (19031/28800)*n^6 + (35137/5760)*n^5 + (513623/8640)*n^4 + (161053/480)*n^3 + (3838487/2800)*n^2 - (614813/210)*n - 2235 for n>6
Comments