A224004 Number of 6Xn 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.
729, 20216, 117386, 388598, 984595, 2160036, 4368458, 8412641, 15703623, 28693082, 51589943, 91524689, 160402902, 277798382, 475383309, 803588211, 1341439640, 2210851797, 3597065144, 5777447600, 9161521721, 14345876103
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..1..1....0..0..0....0..0..0....0..0..2....0..0..0....0..0..0....0..0..2 ..0..1..2....0..0..2....0..2..2....1..1..2....0..2..2....0..0..0....0..1..1 ..0..0..1....0..0..0....0..1..2....1..1..2....1..2..2....0..0..1....1..1..1 ..0..2..2....0..0..0....1..1..1....0..1..1....0..1..2....1..1..2....0..2..2 ..1..1..2....0..0..2....0..1..1....0..1..2....0..1..1....1..1..1....1..1..2 ..1..1..2....1..1..2....2..2..2....1..2..2....0..2..2....0..1..2....0..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/3628800)*n^12 + (1/302400)*n^11 + (419/3628800)*n^10 + (223/120960)*n^9 + (35411/1209600)*n^8 + (20443/50400)*n^7 + (17616857/3628800)*n^6 + (6342323/120960)*n^5 + (821276033/1814400)*n^4 + (103253527/37800)*n^3 + (186412339/16800)*n^2 - (24901729/840)*n - 64275 for n>8
Comments