cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A224007 Number of n X 3 0..2 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

10, 100, 868, 7378, 62764, 534352, 4549684, 38737252, 329817976, 2808146488, 23909211472, 203568584872, 1733230255168, 14757125302768, 125645595288400, 1069775806044208, 9108319894356832, 77550352914336256, 660281732184575104
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2013

Keywords

Comments

Column 3 of A224012.

Examples

			Some solutions for n=3:
..1..2..2....0..0..0....0..0..0....0..1..1....0..0..2....1..2..2....1..2..2
..0..0..0....1..1..2....0..1..2....0..1..2....1..1..2....0..2..2....2..2..2
..0..1..1....0..0..0....1..1..2....0..0..2....0..0..1....1..1..1....0..1..1
		

Crossrefs

Cf. A224012.

Formula

Empirical: a(n) = 10*a(n-1) - 16*a(n-2) + 30*a(n-3) - 14*a(n-4) + 12*a(n-5).
Empirical g.f.: 2*x*(5 + 14*x^2 - x^3 + 6*x^4) / (1 - 10*x + 16*x^2 - 30*x^3 + 14*x^4 - 12*x^5). - Colin Barker, Aug 26 2018

A224008 Number of n X 4 0..2 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

15, 225, 2661, 28541, 297859, 3094127, 32148473, 334179881, 3474343713, 36122604265, 375565139165, 3904724751131, 40597113853797, 422084894246843, 4388382334042279, 45625654988950821, 474366234758987515
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2013

Keywords

Comments

Column 4 of A224012.

Examples

			Some solutions for n=3:
..0..0..2..2....0..1..1..2....1..1..1..2....1..2..2..2....0..0..0..1
..0..0..2..2....1..2..2..2....0..1..1..1....0..0..0..0....0..2..2..2
..0..0..0..2....2..2..2..2....0..1..2..2....0..0..1..1....0..1..1..1
		

Crossrefs

Cf. A224012.

Formula

Empirical: a(n) = 15*a(n-1) - 58*a(n-2) + 105*a(n-3) + 20*a(n-4) - 183*a(n-5) + 220*a(n-6) + 240*a(n-7).
Empirical g.f.: x*(15 + 156*x^2 + 101*x^3 + 157*x^4 + 460*x^5 + 240*x^6) / (1 - 15*x + 58*x^2 - 105*x^3 - 20*x^4 + 183*x^5 - 220*x^6 - 240*x^7). - Colin Barker, Aug 26 2018

A224009 Number of nX5 0..2 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

21, 441, 6815, 90051, 1108969, 13275381, 157347899, 1859567103, 21962353421, 259365424097, 3063049674271, 36174616727819, 427225636505145, 5045588330345405, 59589072289828011, 703755006991845799
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 5 of A224012

Examples

			Some solutions for n=3
..0..0..0..0..1....0..0..1..2..2....0..0..2..2..2....1..1..2..2..2
..1..1..1..2..2....0..1..2..2..2....0..1..1..1..2....1..1..1..1..2
..0..2..2..2..2....1..1..2..2..2....0..0..1..2..2....0..0..0..0..1
		

Formula

Empirical: a(n) = 21*a(n-1) -141*a(n-2) +427*a(n-3) -546*a(n-4) +526*a(n-5) -2124*a(n-6) +3302*a(n-7) +2396*a(n-8) +7504*a(n-9) +580*a(n-10) +1632*a(n-11)

A224010 Number of nX6 0..2 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

28, 784, 15340, 245055, 3516324, 47735665, 630339756, 8213689391, 106375878027, 1373916879120, 17723771318006, 228519337975633, 2945698436819118, 37967141667302902, 489335430219899681, 6306607945054850639
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 6 of A224012

Examples

			Some solutions for n=3
..0..0..0..0..0..2....2..2..2..2..2..2....0..0..0..2..2..2....1..1..2..2..2..2
..1..1..1..1..2..2....0..0..1..2..2..2....0..1..2..2..2..2....1..1..1..2..2..2
..0..1..2..2..2..2....0..1..1..1..1..2....2..2..2..2..2..2....0..0..0..1..1..2
		

Formula

Empirical: a(n) = 28*a(n-1) -283*a(n-2) +1386*a(n-3) -3562*a(n-4) +4940*a(n-5) -3840*a(n-6) -14256*a(n-7) +50007*a(n-8) -26386*a(n-9) +141154*a(n-10) +250789*a(n-11) +41356*a(n-12) +274344*a(n-13) +134400*a(n-14)

A224011 Number of nX7 0..2 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

36, 1296, 31324, 595822, 9866389, 150787422, 2200064042, 31256208954, 437370837827, 6067995150599, 83782568814192, 1153696422958020, 15862451436172435, 217909148559859942, 2992039535598090819
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 7 of A224012

Examples

			Some solutions for n=3
..0..0..0..0..1..1..1....0..0..0..0..2..2..2....0..0..0..0..1..2..2
..0..0..0..0..2..2..2....0..0..0..1..2..2..2....1..1..1..1..1..1..1
..0..0..0..0..0..1..1....0..1..1..1..1..1..1....0..0..0..0..1..1..1
		

Formula

Empirical: a(n) = 36*a(n-1) -505*a(n-2) +3667*a(n-3) -15271*a(n-4) +38113*a(n-5) -59621*a(n-6) +53813*a(n-7) -125335*a(n-8) +657330*a(n-9) -1326014*a(n-10) +2644047*a(n-11) +3529521*a(n-12) +7803900*a(n-13) +959690*a(n-14) +28175350*a(n-15) +27269532*a(n-16) +18725976*a(n-17) +1826832*a(n-18) +1263744*a(n-19)

A224013 Number of 3 X n 0..2 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

27, 216, 868, 2661, 6815, 15340, 31324, 59267, 105461, 178416, 289332, 452617, 686451, 1013396, 1461052, 2062759, 2858345, 3894920, 5227716, 6920973, 9048871, 11696508, 14960924, 18952171, 23794429, 29627168, 36606356, 44905713, 54718011
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2013

Keywords

Comments

Row 3 of A224012.

Examples

			Some solutions for n=3:
..0..0..0....1..1..1....0..0..1....0..1..2....0..1..2....1..2..2....1..1..2
..2..2..2....1..1..2....2..2..2....1..1..2....0..0..0....1..1..1....0..0..2
..1..2..2....1..2..2....1..1..2....1..1..2....0..0..2....1..1..1....0..1..1
		

Crossrefs

Cf. A224012.

Formula

Empirical: a(n) = (23/360)*n^6 + (27/40)*n^5 + (271/72)*n^4 + (65/8)*n^3 + (2101/180)*n^2 + (97/10)*n - 1 for n>1.
Conjectures from Colin Barker, Aug 26 2018: (Start)
G.f.: x*(27 + 27*x - 77*x^2 + 176*x^3 - 199*x^4 + 129*x^5 - 43*x^6 + 6*x^7) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>8.
(End)

A224014 Number of 4 X n 0..2 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

81, 1296, 7378, 28541, 90051, 245055, 595822, 1325316, 2742301, 5343468, 9896484, 17548273, 29963249, 49496631, 79408380, 124123708, 189546519, 283432552, 415829406, 599591037, 850974727, 1190328935, 1642880850, 2239632876
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2013

Keywords

Comments

Row 4 of A224012.

Examples

			Some solutions for n=3:
..0..1..2....1..1..2....1..2..2....0..2..2....1..2..2....2..2..2....1..1..1
..0..1..2....0..0..0....1..1..2....0..1..2....1..2..2....1..1..1....1..1..1
..0..2..2....0..0..2....1..1..1....0..2..2....1..1..1....1..1..1....0..2..2
..0..0..1....0..1..2....0..1..2....1..1..2....0..0..2....1..1..1....2..2..2
		

Crossrefs

Cf. A224012.

Formula

Empirical: a(n) = (41/4032)*n^8 + (55/336)*n^7 + (733/480)*n^6 + (1037/120)*n^5 + (4789/192)*n^4 + (2125/48)*n^3 + (216821/5040)*n^2 + (9329/210)*n + 4 for n>2.
Conjectures from Colin Barker, Aug 26 2018: (Start)
G.f.: x*(81 + 567*x - 1370*x^2 + 1991*x^3 + 132*x^4 - 4590*x^5 + 7855*x^6 - 6900*x^7 + 3514*x^8 - 990*x^9 + 120*x^10) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>11.
(End)

A224015 Number of 5 X n 0..2 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

243, 7776, 62764, 297859, 1108969, 3516324, 9866389, 25128396, 59129041, 130220738, 271055417, 537353315, 1020817107, 1867650094, 3304497043, 5674041696, 9482969967, 15465546464, 24666658243, 38548857659, 59128689861
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Row 5 of A224012.

Examples

			Some solutions for n=3
..1..2..2....1..1..1....0..1..2....2..2..2....0..2..2....2..2..2....0..1..2
..1..1..1....0..0..0....1..1..2....0..0..1....1..2..2....0..2..2....2..2..2
..1..1..2....0..0..0....0..1..1....0..1..1....0..1..1....1..1..1....0..2..2
..0..0..1....1..1..1....0..1..2....0..1..2....0..0..2....0..1..1....0..0..1
..0..1..2....0..0..1....2..2..2....2..2..2....0..1..2....0..2..2....0..1..1
		

Crossrefs

Cf. A224012.

Formula

Empirical: a(n) = (1009/907200)*n^10 + (913/36288)*n^9 + (20887/60480)*n^8 + (92987/30240)*n^7 + (835267/43200)*n^6 + (125341/1728)*n^5 + (33910279/181440)*n^4 + (8169817/45360)*n^3 + (2581069/25200)*n^2 + (35674/63)*n + 336 for n>3.

A224016 Number of 6Xn 0..2 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

729, 46656, 534352, 3094127, 13275381, 47735665, 150787422, 430109607, 1128769430, 2762176256, 6366017979, 13926332849, 29098170483, 58367669325, 112877225362, 211218704199, 383609908528, 678009948228, 1168905645807
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Row 6 of A224012

Examples

			Some solutions for n=3
..0..0..1....0..0..1....0..0..1....0..0..1....0..0..0....0..0..1....0..0..0
..0..0..1....0..1..1....0..1..1....0..0..0....2..2..2....1..1..1....0..0..0
..0..1..2....0..2..2....1..2..2....0..0..0....0..0..2....1..1..2....0..1..2
..0..2..2....0..1..1....2..2..2....0..0..1....0..1..2....0..1..2....1..2..2
..2..2..2....1..1..2....0..2..2....2..2..2....0..2..2....1..2..2....0..0..1
..1..1..2....0..1..1....1..1..1....0..2..2....0..2..2....2..2..2....0..2..2
		

Formula

Empirical: a(n) = (761/8553600)*n^12 + (811/302400)*n^11 + (4879/97200)*n^10 + (230029/362880)*n^9 + (10666727/1814400)*n^8 + (6162019/151200)*n^7 + (76144063/388800)*n^6 + (1772311/2688)*n^5 + (230134279/194400)*n^4 + (14927389/453600)*n^3 - (7982908/51975)*n^2 + (2910398/315)*n + 7207 for n>4

A224017 Number of 7Xn 0..2 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

2187, 279936, 4549684, 32148473, 157347899, 630339756, 2200064042, 6905100668, 19884396658, 53273320570, 134149069532, 319991143494, 727540081476, 1584708043525, 3320910477511, 6719637130491, 13169292526095, 25065634112639
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Row 7 of A224012

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..1....0..0..0....0..0..0....0..0..1....0..0..0....0..0..1....0..0..1
..1..1..2....0..1..2....0..2..2....1..1..2....0..1..2....0..1..2....0..1..2
..0..1..1....1..1..1....1..1..1....0..0..0....2..2..2....0..1..2....2..2..2
..1..1..1....0..2..2....1..1..2....0..1..2....0..1..1....1..1..1....1..1..2
..1..2..2....0..1..1....1..1..1....1..1..1....0..2..2....0..0..1....0..2..2
..0..0..2....0..2..2....1..1..1....0..2..2....0..0..1....0..0..0....0..2..2
		

Formula

Empirical: a(n) = (118519/21794572800)*n^14 + (93527/444787200)*n^13 + (611041/119750400)*n^12 + (20516659/239500800)*n^11 + (983303/907200)*n^10 + (76863193/7257600)*n^9 + (6226908251/76204800)*n^8 + (10267137467/21772800)*n^7 + (44655148529/21772800)*n^6 + (59149317869/10886400)*n^5 + (6745497467/1108800)*n^4 - (150827667029/9979200)*n^3 - (38880748217/10090080)*n^2 + (55017835997/360360)*n + 124353 for n>5
Showing 1-10 of 11 results. Next