A224014 Number of 4 X n 0..2 arrays with rows nondecreasing and antidiagonals unimodal.
81, 1296, 7378, 28541, 90051, 245055, 595822, 1325316, 2742301, 5343468, 9896484, 17548273, 29963249, 49496631, 79408380, 124123708, 189546519, 283432552, 415829406, 599591037, 850974727, 1190328935, 1642880850, 2239632876
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..1..2....1..1..2....1..2..2....0..2..2....1..2..2....2..2..2....1..1..1 ..0..1..2....0..0..0....1..1..2....0..1..2....1..2..2....1..1..1....1..1..1 ..0..2..2....0..0..2....1..1..1....0..2..2....1..1..1....1..1..1....0..2..2 ..0..0..1....0..1..2....0..1..2....1..1..2....0..0..2....1..1..1....2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224012.
Formula
Empirical: a(n) = (41/4032)*n^8 + (55/336)*n^7 + (733/480)*n^6 + (1037/120)*n^5 + (4789/192)*n^4 + (2125/48)*n^3 + (216821/5040)*n^2 + (9329/210)*n + 4 for n>2.
Conjectures from Colin Barker, Aug 26 2018: (Start)
G.f.: x*(81 + 567*x - 1370*x^2 + 1991*x^3 + 132*x^4 - 4590*x^5 + 7855*x^6 - 6900*x^7 + 3514*x^8 - 990*x^9 + 120*x^10) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>11.
(End)
Comments