A224015 Number of 5 X n 0..2 arrays with rows nondecreasing and antidiagonals unimodal.
243, 7776, 62764, 297859, 1108969, 3516324, 9866389, 25128396, 59129041, 130220738, 271055417, 537353315, 1020817107, 1867650094, 3304497043, 5674041696, 9482969967, 15465546464, 24666658243, 38548857659, 59128689861
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..2..2....1..1..1....0..1..2....2..2..2....0..2..2....2..2..2....0..1..2 ..1..1..1....0..0..0....1..1..2....0..0..1....1..2..2....0..2..2....2..2..2 ..1..1..2....0..0..0....0..1..1....0..1..1....0..1..1....1..1..1....0..2..2 ..0..0..1....1..1..1....0..1..2....0..1..2....0..0..2....0..1..1....0..0..1 ..0..1..2....0..0..1....2..2..2....2..2..2....0..1..2....0..2..2....0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224012.
Formula
Empirical: a(n) = (1009/907200)*n^10 + (913/36288)*n^9 + (20887/60480)*n^8 + (92987/30240)*n^7 + (835267/43200)*n^6 + (125341/1728)*n^5 + (33910279/181440)*n^4 + (8169817/45360)*n^3 + (2581069/25200)*n^2 + (35674/63)*n + 336 for n>3.
Comments