A224017 Number of 7Xn 0..2 arrays with rows nondecreasing and antidiagonals unimodal.
2187, 279936, 4549684, 32148473, 157347899, 630339756, 2200064042, 6905100668, 19884396658, 53273320570, 134149069532, 319991143494, 727540081476, 1584708043525, 3320910477511, 6719637130491, 13169292526095, 25065634112639
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0 ..0..0..1....0..0..0....0..0..0....0..0..1....0..0..0....0..0..1....0..0..1 ..1..1..2....0..1..2....0..2..2....1..1..2....0..1..2....0..1..2....0..1..2 ..0..1..1....1..1..1....1..1..1....0..0..0....2..2..2....0..1..2....2..2..2 ..1..1..1....0..2..2....1..1..2....0..1..2....0..1..1....1..1..1....1..1..2 ..1..2..2....0..1..1....1..1..1....1..1..1....0..2..2....0..0..1....0..2..2 ..0..0..2....0..2..2....1..1..1....0..2..2....0..0..1....0..0..0....0..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (118519/21794572800)*n^14 + (93527/444787200)*n^13 + (611041/119750400)*n^12 + (20516659/239500800)*n^11 + (983303/907200)*n^10 + (76863193/7257600)*n^9 + (6226908251/76204800)*n^8 + (10267137467/21772800)*n^7 + (44655148529/21772800)*n^6 + (59149317869/10886400)*n^5 + (6745497467/1108800)*n^4 - (150827667029/9979200)*n^3 - (38880748217/10090080)*n^2 + (55017835997/360360)*n + 124353 for n>5
Comments