cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224027 Number of 5Xn 0..3 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

1024, 100000, 1859020, 17735200, 120352359, 646270418, 2903448338, 11324147154, 39352493380, 124192808325, 361131166470, 978546580876, 2493201619797, 6016880535375, 13837190690133, 30477772502130, 64570854690796
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Row 5 of A224024

Examples

			Some solutions for n=3
..0..0..2....0..0..2....0..0..2....0..0..2....0..0..0....0..0..0....0..0..0
..0..2..3....0..2..2....0..2..3....0..0..2....0..0..1....0..2..2....0..0..2
..1..3..3....0..2..3....1..2..3....0..2..3....1..1..1....0..0..0....0..2..3
..0..1..3....2..3..3....0..1..2....2..3..3....1..2..2....0..0..1....1..2..2
..0..3..3....1..1..3....0..0..0....2..2..3....1..1..2....0..0..3....1..3..3
		

Formula

Empirical: a(n) = (769/444787200)*n^15 + (781507/10897286400)*n^14 + (732989/444787200)*n^13 + (6062213/239500800)*n^12 + (4527293/15966720)*n^11 + (49818529/21772800)*n^10 + (300432343/21772800)*n^9 + (9176781683/152409600)*n^8 + (2072451091/10886400)*n^7 + (1971136933/4354560)*n^6 + (16020797923/19958400)*n^5 + (55454431657/59875200)*n^4 - (688455589/2402400)*n^3 - (18610604083/37837800)*n^2 + (69728249/15015)*n + 2530 for n>3