A224027 Number of 5Xn 0..3 arrays with rows nondecreasing and antidiagonals unimodal.
1024, 100000, 1859020, 17735200, 120352359, 646270418, 2903448338, 11324147154, 39352493380, 124192808325, 361131166470, 978546580876, 2493201619797, 6016880535375, 13837190690133, 30477772502130, 64570854690796
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..2....0..0..2....0..0..2....0..0..2....0..0..0....0..0..0....0..0..0 ..0..2..3....0..2..2....0..2..3....0..0..2....0..0..1....0..2..2....0..0..2 ..1..3..3....0..2..3....1..2..3....0..2..3....1..1..1....0..0..0....0..2..3 ..0..1..3....2..3..3....0..1..2....2..3..3....1..2..2....0..0..1....1..2..2 ..0..3..3....1..1..3....0..0..0....2..2..3....1..1..2....0..0..3....1..3..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (769/444787200)*n^15 + (781507/10897286400)*n^14 + (732989/444787200)*n^13 + (6062213/239500800)*n^12 + (4527293/15966720)*n^11 + (49818529/21772800)*n^10 + (300432343/21772800)*n^9 + (9176781683/152409600)*n^8 + (2072451091/10886400)*n^7 + (1971136933/4354560)*n^6 + (16020797923/19958400)*n^5 + (55454431657/59875200)*n^4 - (688455589/2402400)*n^3 - (18610604083/37837800)*n^2 + (69728249/15015)*n + 2530 for n>3
Comments