cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224028 Number of 6Xn 0..3 arrays with rows nondecreasing and antidiagonals unimodal.

This page as a plain text file.
%I A224028 #6 Jul 23 2025 04:54:27
%S A224028 4096,1000000,30756756,403836633,3491241557,23151623729,126168072638,
%T A224028 589287463547,2427724545612,9007001464858,30566042176352,
%U A224028 96033091778636,282028543897612,780257746938799,2046679053764299,5117642427934938
%N A224028 Number of 6Xn 0..3 arrays with rows nondecreasing and antidiagonals unimodal.
%C A224028 Row 6 of A224024
%H A224028 R. H. Hardin, <a href="/A224028/b224028.txt">Table of n, a(n) for n = 1..210</a>
%F A224028 Empirical: a(n) = (42587101/1600593426432000)*n^18 + (23341517/16167610368000)*n^17 + (15783371/356638464000)*n^16 + (31606091/33965568000)*n^15 + (17663092277/1207084032000)*n^14 + (133630090943/747242496000)*n^13 + (3090381263819/1810626048000)*n^12 + (861240248921/67060224000)*n^11 + (16435251844841/219469824000)*n^10 + (3455775661663/10450944000)*n^9 + (654929669980007/603542016000)*n^8 + (1738593710779/653184000)*n^7 + (82071435647381/16717428000)*n^6 + (429177771626699/59439744000)*n^5 - (15320544442081/40864824000)*n^4 - (2761354550633/92664000)*n^3 - (36294722496521/593762400)*n^2 + (776634903133/6126120)*n + 95040 for n>4
%e A224028 Some solutions for n=3
%e A224028 ..0..0..2....0..0..0....0..0..2....0..0..0....0..0..0....0..0..0....0..0..2
%e A224028 ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
%e A224028 ..0..0..0....1..2..3....0..2..3....0..0..3....1..2..3....2..2..2....0..2..2
%e A224028 ..1..1..3....0..1..3....1..1..2....1..1..1....1..3..3....1..1..2....1..1..3
%e A224028 ..0..1..2....0..2..2....1..1..1....1..2..3....1..1..3....1..2..2....0..1..1
%e A224028 ..1..1..2....0..0..1....0..1..1....2..3..3....1..1..3....0..0..1....1..2..2
%K A224028 nonn
%O A224028 1,1
%A A224028 _R. H. Hardin_ Mar 30 2013