A224035 Number of n X 5 0..1 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.
6, 26, 85, 252, 734, 2149, 6321, 18673, 55373, 164729, 491332, 1468446, 4395388, 13170815, 39497285, 118511408, 355728667, 1068051097, 3207330581, 9632722080, 28932821313, 86907496260, 261060029437, 784214341324, 2355790958452
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..0..0..0....0..0..0..1..1....0..0..0..0..0....0..0..0..1..1 ..0..1..1..1..1....0..1..1..1..1....0..1..1..1..1....0..1..1..1..1 ..1..1..1..1..1....0..1..1..1..1....0..0..1..1..1....1..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224038.
Formula
Empirical: a(n) = 6*a(n-1) - 10*a(n-2) + a(n-3) + 6*a(n-4) + a(n-5) - 4*a(n-6) + 4*a(n-7) - 4*a(n-8) + 8*a(n-9) for n>10.
Empirical g.f.: x*(6 - 10*x - 11*x^2 - 4*x^3 + 10*x^4 + 18*x^5 + 3*x^6 - 14*x^7 - 4*x^9) / ((1 - 2*x)*(1 - 4*x + 2*x^2 + 3*x^3 - x^5 + 2*x^6 + 4*x^8)). - Colin Barker, Aug 26 2018
Comments