A224042 Number of 6 X n 0..1 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.
64, 377, 848, 1422, 2149, 3107, 4395, 6124, 8439, 11527, 15626, 21035, 28125, 37351, 49265, 64530, 83935, 108411, 139048, 177113, 224069, 281595, 351607, 436280, 538071, 659743, 804390, 975463, 1176797, 1412639, 1687677, 2007070, 2376479
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..0....1..1..1....1..1..1....0..0..0....0..0..0....0..0..0....1..1..1 ..0..0..1....0..1..1....1..1..1....1..1..1....0..0..0....0..0..0....0..1..1 ..0..0..0....0..1..1....0..1..1....1..1..1....0..0..0....0..0..0....0..0..1 ..0..0..1....0..1..1....0..1..1....0..1..1....0..0..0....0..0..1....0..0..1 ..0..0..0....1..1..1....0..1..1....1..1..1....0..0..1....0..1..1....0..0..0 ..0..1..1....1..1..1....1..1..1....0..1..1....0..1..1....1..1..1....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224038.
Formula
Empirical: a(n) = (1/720)*n^6 + (1/240)*n^5 + (35/144)*n^4 + (127/48)*n^3 + (1249/45)*n^2 + (3727/20)*n + 6 for n>4.
Conjectures from Colin Barker, Aug 26 2018: (Start)
G.f.: x*(64 - 71*x - 447*x^2 + 1163*x^3 - 952*x^4 + 97*x^5 + 216*x^6 - 72*x^7 + 33*x^8 - 45*x^9 + 15*x^10) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>11.
(End)
Comments