A224043 Number of 7 X n 0..1 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.
128, 987, 2419, 4160, 6321, 9125, 12856, 17875, 24623, 33686, 45837, 62087, 83746, 112495, 150470, 200359, 265513, 350072, 459107, 598779, 776516, 1001209, 1283428, 1635659, 2072563, 2611258, 3271625, 4076639, 5052726, 6230147, 7643410, 9331711
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..1..1....0..0..0....1..1..1....0..0..0....1..1..1....0..0..1....0..0..0 ..0..0..1....1..1..1....0..1..1....0..1..1....0..1..1....0..1..1....0..0..0 ..0..1..1....1..1..1....0..0..1....0..0..1....0..0..1....1..1..1....0..0..0 ..1..1..1....1..1..1....0..1..1....0..1..1....0..0..1....0..1..1....0..0..1 ..0..1..1....0..1..1....0..0..1....1..1..1....0..0..1....0..1..1....0..1..1 ..0..0..1....0..1..1....0..0..0....0..1..1....0..0..0....1..1..1....0..0..1 ..0..0..1....0..0..1....0..0..0....0..1..1....0..0..0....0..1..1....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224038.
Formula
Empirical: a(n) = (1/5040)*n^7 + (17/360)*n^5 + (13/24)*n^4 + (5767/720)*n^3 + (1919/24)*n^2 + (37901/70)*n + 143 for n>5.
Conjectures from Colin Barker, Aug 26 2018: (Start)
G.f.: x*(128 - 37*x - 1893*x^2 + 5276*x^3 - 5539*x^4 + 1495*x^5 + 1526*x^6 - 1101*x^7 + 65*x^8 + 155*x^9 - 160*x^10 + 117*x^11 - 31*x^12) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>13.
(End)
Comments