A224053 Number of n X 4 0..2 arrays with rows and columns unimodal and antidiagonals nondecreasing.
46, 698, 5219, 27246, 115716, 428949, 1442005, 4492529, 13133871, 36307595, 95412314, 239342404, 575169570, 1328404782, 2957341785, 6363295591, 13266197675, 26858140315, 52913319943, 101631438086, 190636635796
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0..0....0..0..0..1....0..0..0..0....0..0..1..1....2..1..0..0 ..2..1..1..1....0..0..1..0....2..1..0..0....0..1..2..0....1..1..1..2 ..1..2..2..0....1..1..1..0....1..1..2..0....1..2..1..0....1..1..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224057.
Formula
Empirical: a(n) = (1/106748928000)*n^16 + (1/2668723200)*n^15 + (29/2335132800)*n^14 + (9677/37362124800)*n^13 + (129359/28740096000)*n^12 + (171629/2874009600)*n^11 + (12139/18662400)*n^10 + (195851/37324800)*n^9 + (231935077/5225472000)*n^8 + (74110763/261273600)*n^7 + (324341569/179625600)*n^6 + (4052978161/718502400)*n^5 + (3589053277/247104000)*n^4 - (12388141/741312)*n^3 + (87129737/1029600)*n^2 + (364945/2574)*n - 457 for n>3.
Comments