cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224053 Number of n X 4 0..2 arrays with rows and columns unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

46, 698, 5219, 27246, 115716, 428949, 1442005, 4492529, 13133871, 36307595, 95412314, 239342404, 575169570, 1328404782, 2957341785, 6363295591, 13266197675, 26858140315, 52913319943, 101631438086, 190636635796
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2013

Keywords

Comments

Column 4 of A224057.

Examples

			Some solutions for n=3
..0..0..0..0....0..0..0..1....0..0..0..0....0..0..1..1....2..1..0..0
..2..1..1..1....0..0..1..0....2..1..0..0....0..1..2..0....1..1..1..2
..1..2..2..0....1..1..1..0....1..1..2..0....1..2..1..0....1..1..2..2
		

Crossrefs

Cf. A224057.

Formula

Empirical: a(n) = (1/106748928000)*n^16 + (1/2668723200)*n^15 + (29/2335132800)*n^14 + (9677/37362124800)*n^13 + (129359/28740096000)*n^12 + (171629/2874009600)*n^11 + (12139/18662400)*n^10 + (195851/37324800)*n^9 + (231935077/5225472000)*n^8 + (74110763/261273600)*n^7 + (324341569/179625600)*n^6 + (4052978161/718502400)*n^5 + (3589053277/247104000)*n^4 - (12388141/741312)*n^3 + (87129737/1029600)*n^2 + (364945/2574)*n - 457 for n>3.