A224054 Number of nX5 0..2 arrays with rows and columns unimodal and antidiagonals nondecreasing.
86, 1915, 18502, 115716, 568107, 2392915, 9064541, 31777144, 104876598, 329032264, 986501800, 2835296957, 7828424002, 20803012406, 53300631267, 131909615889, 315895583635, 733342224413, 1653158389976, 3624784596348
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0..2..1....0..0..1..1..0....0..1..1..0..0....0..1..0..0..0 ..2..2..2..2..1....1..2..1..1..0....2..1..1..0..0....1..1..2..0..0 ..2..2..2..1..1....2..2..2..1..0....1..2..2..2..0....1..2..2..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/1379196149760000)*n^20 + (1/27583922995200)*n^19 + (67/43553562624000)*n^18 + (163/3908653056000)*n^17 + (33853/34871316480000)*n^16 + (190111/10461394944000)*n^15 + (2078491/6974263296000)*n^14 + (221821/55351296000)*n^13 + (343209919/6897623040000)*n^12 + (12543727/32845824000)*n^11 + (5532659291/1072963584000)*n^10 + (47191439329/1609445376000)*n^9 + (4217033948263/13076743680000)*n^8 + (559137652921/373621248000)*n^7 + (8858390764133/1120863744000)*n^6 + (3120341453/532224000)*n^5 + (759212883816859/9262693440000)*n^4 - (58527804403451/154378224000)*n^3 + (36684493649747/24443218800)*n^2 + (34656538003/23279256)*n - 11297 for n>5
Comments