cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224055 Number of nX6 0..2 arrays with rows and columns unimodal and antidiagonals nondecreasing.

This page as a plain text file.
%I A224055 #6 Jul 23 2025 04:58:26
%S A224055 148,4690,57911,428949,2392915,11231300,46853641,179545949,646161612,
%T A224055 2215310269,7295294696,23173431000,71137228340,211216789027,
%U A224055 606907100518,1688654512840,4553248388246,11908977568334,30245780813181
%N A224055 Number of nX6 0..2 arrays with rows and columns unimodal and antidiagonals nondecreasing.
%C A224055 Column 6 of A224057
%H A224055 R. H. Hardin, <a href="/A224055/b224055.txt">Table of n, a(n) for n = 1..178</a>
%F A224055 Empirical: a(n) = (1/35608838483312640000)*n^24 + (1/593480641388544000)*n^23 + (1/11491439984640000)*n^22 + (59/20274183401472000)*n^21 + (204271/2432902008176640000)*n^20 + (34451/17377871486976000)*n^19 + (18917939/448166159400960000)*n^18 + (769849/995924798668800)*n^17 + (226679623/17575143505920000)*n^16 + (2152013/11412430848000)*n^15 + (706815667/289700167680000)*n^14 + (9710969/517321728000)*n^13 + (22058018740169/52725430517760000)*n^12 + (883262112781/878757175296000)*n^11 + (30292372315283/675967057920000)*n^10 + (425362282393/5977939968000)*n^9 + (18858448588311589/8002967132160000)*n^8 - (2707211596157/114328101888000)*n^7 + (2638894624680309119/59133034920960000)*n^6 - (590269621381831/6636704256000)*n^5 + (21039414018476657/25935541632000)*n^4 - (10575054526365457/1955457504000)*n^3 + (4363361309424841/172982779200)*n^2 + (520015184729/102965940)*n - 216272 for n>7
%e A224055 Some solutions for n=3
%e A224055 ..1..0..0..0..0..0....0..0..0..0..2..0....0..1..1..0..0..0....0..0..0..0..2..0
%e A224055 ..2..0..0..0..0..0....0..0..1..2..1..0....1..2..2..0..0..0....0..0..2..2..1..0
%e A224055 ..1..1..0..0..0..0....0..2..2..1..1..1....2..2..2..1..1..0....2..2..2..1..0..0
%K A224055 nonn
%O A224055 1,1
%A A224055 _R. H. Hardin_ Mar 30 2013