cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A224058 Number of nX2 0..3 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing.

Original entry on oeis.org

16, 160, 984, 4580, 17723, 59792, 180821, 499357, 1276595, 3053471, 6892199, 14784563, 30317821, 59727346, 113515445, 208880837, 373286086, 649594326, 1103335758, 1832822970, 2983026931, 4764357840, 7477772697, 11547960881
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 2 of A224064

Examples

			Some solutions for n=3
..3..0....2..3....1..1....0..0....0..0....2..1....0..0....0..3....1..0....0..0
..1..3....3..3....1..2....1..1....2..1....1..3....3..0....1..3....2..2....0..0
..1..1....2..3....2..3....1..2....2..3....0..1....0..3....2..2....1..3....2..0
		

Formula

Empirical: a(n) = (1/19160064)*n^12 + (1/456192)*n^11 + (2287/43545600)*n^10 + (215/290304)*n^9 + (2861/414720)*n^8 + (7187/161280)*n^7 + (10695901/43545600)*n^6 + (212027/207360)*n^5 + (6072841/2177280)*n^4 + (1652783/362880)*n^3 + (1059277/237600)*n^2 + (26023/13860)*n + 1

A224059 Number of nX3 0..3 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing.

Original entry on oeis.org

50, 984, 8854, 58814, 324702, 1557606, 6643979, 25596389, 90177585, 293585050, 891208427, 2542007013, 6857916671, 17598839738, 43168340844, 101638636169, 230538577645, 505352928460, 1073534755140, 2215475595868, 4451276849868
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 3 of A224064

Examples

			Some solutions for n=3
..3..0..0....0..0..0....0..0..2....2..2..1....1..1..0....1..1..1....2..0..0
..3..3..1....1..1..0....1..1..2....1..2..3....1..1..1....0..1..3....1..3..2
..0..3..3....1..2..3....1..1..3....0..2..3....0..1..2....0..1..3....1..1..3
		

Formula

Empirical: a(n) = (1/3629463552000)*n^18 + (1/80654745600)*n^17 + (673/1307674368000)*n^16 + (3163/237758976000)*n^15 + (208801/747242496000)*n^14 + (625841/149448499200)*n^13 + (1696897/28740096000)*n^12 + (14064731/28740096000)*n^11 + (339240647/73156608000)*n^10 + (339530671/14631321600)*n^9 + (4767368563/28740096000)*n^8 + (637757023/1026432000)*n^7 + (26329719541/10378368000)*n^6 + (2426824577/339655680)*n^5 + (343572662101/18162144000)*n^4 - (189957341011/9081072000)*n^3 + (1627071089/5834400)*n^2 - (2276993179/3063060)*n + 701 for n>3

A224060 Number of nX4 0..3 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing.

Original entry on oeis.org

130, 4580, 58814, 506513, 3509115, 21167501, 114643788, 564290412, 2542634801, 10557558941, 40668731568, 146309729951, 494716846368, 1581405249972, 4804031345110, 13933344725622, 38739584907398, 103620108265460
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 4 of A224064

Examples

			Some solutions for n=3
..1..1..2..2....0..1..0..0....3..2..0..0....1..2..2..1....0..1..1..0
..1..2..2..2....0..2..3..1....0..3..3..3....1..3..3..3....1..1..1..1
..2..3..2..2....0..1..3..3....0..3..3..3....1..1..3..3....0..2..2..2
		

Formula

Empirical: a(n) = (1/2906843957821440000)*n^24 + (1/80745665495040000)*n^23 + (14503/17841281393295360000)*n^22 + (4577/187146308321280000)*n^21 + (57773/73169985208320000)*n^20 + (451967/24825530695680000)*n^19 + (25829959/64023737057280000)*n^18 + (161591629/21341245685760000)*n^17 + (1317174581/10042939146240000)*n^16 + (1042229807/684745850880000)*n^15 + (224775509633/15064408719360000)*n^14 + (255513067541/1076029194240000)*n^13 - (126037283815777/331416991825920000)*n^12 + (4311994432289/156920924160000)*n^11 - (290647612737067/2510734786560000)*n^10 + (5895362157233/4526565120000)*n^9 - (80296454539927819/32011868528640000)*n^8 + (2890170225407863/285820254720000)*n^7 + (6620255551080740287/152056375511040000)*n^6 - (119874811010411/95995186560000)*n^5 - (594949061071512629/422378820864000)*n^4 + (3927812632523993/279351072000)*n^3 - (77971408834461167/1562307626880)*n^2 + (50159875988069/1784742960)*n + 138193 for n>7

A224061 Number of nX5 0..3 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing.

Original entry on oeis.org

296, 17723, 324702, 3509115, 28682690, 200974242, 1274747540, 7460451193, 40485099654, 203984697906, 955984201540, 4180173148322, 17124267694239, 66026896430771, 240766134331288, 834162297362085, 2757870663383867
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 5 of A224064

Examples

			Some solutions for n=3
..0..0..0..1..0....0..1..2..2..2....0..0..0..0..1....0..0..0..2..3
..1..1..1..1..3....1..1..2..2..2....0..0..2..2..2....0..0..1..2..3
..0..1..3..1..1....1..1..1..3..3....0..0..2..2..2....0..1..1..3..3
		

Formula

Empirical polynomial of degree 30 (see link above)

A224062 Number of nX6 0..3 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing.

Original entry on oeis.org

610, 59792, 1557606, 21167501, 200974242, 1573171210, 11060805360, 72498474377, 448019196499, 2610730742471, 14308688695540, 73630728965911, 355779874654006, 1617038472236418, 6933004209446591, 28139119355529508
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 6 of A224064

Examples

			Some solutions for n=3
..0..0..0..0..1..0....0..0..0..0..1..0....0..0..1..1..1..0....0..0..0..0..0..0
..0..0..2..2..3..3....0..0..0..1..1..3....0..0..2..2..2..2....0..0..2..2..2..2
..1..1..2..2..2..3....0..0..3..3..2..1....0..2..3..3..3..3....0..0..0..3..3..2
		

A224063 Number of nX7 0..3 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing.

Original entry on oeis.org

1163, 180821, 6643979, 114643788, 1274747540, 11060805360, 83942450048, 591725806925, 3973992584299, 25579886531225, 157381574935619, 920939113739591
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 7 of A224064

Examples

			Some solutions for n=3
..0..0..0..0..0..2..0....0..0..0..0..0..1..0....0..0..0..0..0..0..1
..0..0..0..0..0..3..2....0..0..0..2..2..2..3....0..0..0..1..1..2..1
..0..0..0..0..1..2..3....0..0..0..1..2..3..2....0..0..0..1..2..3..3
		
Showing 1-6 of 6 results.