This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224066 #41 Apr 06 2021 20:18:12 %S A224066 1,2,7,28,114,472,1988,8480,36474,157720,684404,2976994,12971206, %T A224066 56587676,247097170,1079749976,4720841314,20649303934,90353041092, %U A224066 395459463960,1731251197242,7580521689750,33197447406682,145400339328566,636901149067534,2790082285204966 %N A224066 Number of smooth Schubert varieties of type C_n. %C A224066 Characterized as the signed permutations avoiding the list of patterns: '((1 -2) (-2 -1 -3) (3 -2 1) (3 -2 -1) (-3 2 -1) (-3 -2 1) (-3 -2 -1)(-2 -4 3 1) (3 4 1 2) (3 4 -1 2) (-3 4 1 2) (-3 4 -1 2)(-3 -4 -1 -2) (4 -1 3 -2) (4 2 3 1) (4 2 3 -1) (-4 2 3 1)) %H A224066 S. C. Billey, <a href="https://doi.org/10.1006/aima.1998.1744">Pattern Avoidance and Rational Smoothness of Schubert varieties</a>, Advances in Math, vol. 139 (1998) pp. 141-156. %H A224066 E. Richmond and W. Slofstra, <a href="https://arxiv.org/abs/1510.06060">Staircase diagrams and enumeration of smooth Schubert varieties</a>, arXiv:1510.06060 [math.CO], 2015; J. Combin. Ser. A, Vol 150 (2017) pp. 328-376. %F A224066 G.f.: ((1-7*x+15*x^2-11*x^3-2*x^4+5*x^5)+(x-x^2-x^3+3*x^4-x^5)*sqrt(1-4*x))/((1-x)^2*(1-6*x+8*x^2-4*x^3)). - _Edward Richmond_, Apr 06 2021 %o A224066 (PARI) seq(n)={Vec(((1-7*x+15*x^2-11*x^3-2*x^4+5*x^5)+(x-x^2-x^3+3*x^4-x^5)*sqrt(1-4*x + O(x^n)))/((1-x)^2*(1-6*x+8*x^2-4*x^3)))} \\ _Andrew Howroyd_, Apr 06 2021 %Y A224066 Cf. A061539. %K A224066 nonn,easy %O A224066 0,2 %A A224066 _Sara Billey_, Apr 02 2013 %E A224066 a(0)=1 prepended and a(11) and beyond added by _Edward Richmond_, Apr 05 2021