cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224102 Numerators of poly-Cauchy numbers of the second kind hat c_n^(2).

This page as a plain text file.
%I A224102 #37 Feb 26 2023 18:11:52
%S A224102 1,-1,13,-43,5647,-3401,2763977,-10326059,876576493,-1665984623,
%T A224102 1156096889861,-2220482068331,75970695882225719,-1088498788093641,
%U A224102 855021689397409453,-3324381371618385007,4010325276269988793421
%N A224102 Numerators of poly-Cauchy numbers of the second kind hat c_n^(2).
%C A224102 The poly-Cauchy numbers of the second kind hat c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n).
%H A224102 Vincenzo Librandi, <a href="/A224102/b224102.txt">Table of n, a(n) for n = 0..300</a>
%H A224102 Takao Komatsu, <a href="http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1806-06.pdf">Poly-Cauchy numbers</a>, RIMS Kokyuroku 1806 (2012)
%H A224102 Takao Komatsu, <a href="http://link.springer.com/article/10.1007/s11139-012-9452-0">Poly-Cauchy numbers with a q parameter</a>, Ramanujan J. 31 (2013), 353-371.
%H A224102 Takao Komatsu, <a href="http://doi.org/10.2206/kyushujm.67.143">Poly-Cauchy numbers</a>, Kyushu J. Math. 67 (2013), 143-153.
%H A224102 T. Komatsu, V. Laohakosol, K. Liptai, <a href="http://dx.doi.org/10.1155/2013/179841">A generalization of poly-Cauchy numbers and its properties</a>, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
%H A224102 Takao Komatsu, FZ Zhao, <a href="http://arxiv.org/abs/1603.06725">The log-convexity of the poly-Cauchy numbers</a>, arXiv preprint arXiv:1603.06725, 2016
%t A224102 Table[Numerator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^2, {k, 0, n}]], {n, 0,
%t A224102   25}]
%o A224102 (PARI) a(n) = numerator(sum(k=0, n, stirling(n, k, 1)*(-1)^k/(k+1)^2)); \\ _Michel Marcus_, Nov 14 2015
%Y A224102 Cf. A002657, A223899, A219247 (denominators).
%K A224102 sign,frac
%O A224102 0,3
%A A224102 _Takao Komatsu_, Mar 31 2013