cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224105 Denominators of poly-Cauchy numbers of the second kind hat c_n^(4).

This page as a plain text file.
%I A224105 #40 Mar 02 2025 14:02:38
%S A224105 1,16,1296,6912,6480000,288000,6223392000,14224896000,1440270720000,
%T A224105 64012032000,562320096307200,511200087552000,255506749760021760000,
%U A224105 1455878916011520000,673863955411046400,17969705477627904000
%N A224105 Denominators of poly-Cauchy numbers of the second kind hat c_n^(4).
%C A224105 The poly-Cauchy numbers of the second kind hat c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n).
%H A224105 Vincenzo Librandi, <a href="/A224105/b224105.txt">Table of n, a(n) for n = 0..300</a>
%H A224105 Takao Komatsu, <a href="http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1806-06.pdf">Poly-Cauchy numbers</a>, RIMS Kokyuroku 1806 (2012)
%H A224105 Takao Komatsu, <a href="http://link.springer.com/article/10.1007/s11139-012-9452-0">Poly-Cauchy numbers with a q parameter</a>, Ramanujan J. 31 (2013), 353-371.
%H A224105 Takao Komatsu, <a href="http://doi.org/10.2206/kyushujm.67.143">Poly-Cauchy numbers</a>, Kyushu J. Math. 67 (2013), 143-153.
%H A224105 T. Komatsu, V. Laohakosol, and K. Liptai, <a href="http://dx.doi.org/10.1155/2013/179841">A generalization of poly-Cauchy numbers and its properties</a>, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
%H A224105 Takao Komatsu and F.-Z. Zhao, <a href="http://arxiv.org/abs/1603.06725">The log-convexity of the poly-Cauchy numbers</a>, arXiv preprint arXiv:1603.06725 [math.NT], 2016.
%t A224105 Table[Denominator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^4, {k, 0, n}]], {n, 0, 25}]
%o A224105 (PARI) a(n) = denominator(sum(k=0, n,(-1)^k*stirling(n, k, 1)/(k+1)^4)); \\ _Michel Marcus_, Nov 15 2015
%Y A224105 Cf. A002790, A223902, A219247, A224103, A224106 (numerators).
%K A224105 nonn,frac
%O A224105 0,2
%A A224105 _Takao Komatsu_, Mar 31 2013