cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A224117 Number of idempotent n X n 0..1 matrices of rank n-2.

Original entry on oeis.org

0, 1, 27, 282, 2050, 12405, 67557, 344708, 1686132, 8017335, 37383775, 171917790, 782635542, 3535573769, 15875062665, 70921483080, 315457366696
Offset: 1

Views

Author

R. H. Hardin Apr 09 2013

Keywords

Comments

Column 1 of A224118

Examples

			Some solutions for n=3
..0..0..0....1..0..0....0..0..0....0..0..1....0..0..0....1..0..0....0..0..0
..1..1..0....0..0..0....0..1..0....0..0..1....0..0..0....1..0..0....1..0..1
..0..0..0....0..0..0....0..1..0....0..0..1....1..0..1....1..0..0....1..0..1
		

A224119 Number of idempotent 5X5 0..n matrices of rank 3.

Original entry on oeis.org

2050, 20810, 103050, 368130, 1042030, 2563150, 5576290, 11164490, 20782910, 36563090, 61222530, 98646650, 153264230, 231266730, 339896070
Offset: 1

Views

Author

R. H. Hardin Apr 09 2013

Keywords

Comments

Row 5 of A224118

Examples

			Some solutions for n=3
..1..0..0..0..0....1..3..0..2..0....1..0..0..1..0....1..0..0..0..0
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..1..0..0..0
..0..2..1..0..1....0..1..1..0..0....0..1..1..2..0....0..0..1..0..0
..0..3..0..1..1....0..0..0..0..0....0..0..0..0..0....2..1..3..0..0
..0..0..0..0..0....0..0..0..2..1....0..3..0..3..1....0..1..3..0..0
		

A224120 Number of idempotent 6X6 0..n matrices of rank 4.

Original entry on oeis.org

12405, 260235, 2273505, 12775065, 52968495, 178881705, 514370175, 1311704565, 3033506835, 6484756785
Offset: 1

Views

Author

R. H. Hardin Apr 09 2013

Keywords

Comments

Row 6 of A224118

Examples

			Some solutions for n=3
..0..0..3..0..0..0....1..0..1..1..0..0....1..0..0..0..1..0....1..0..0..0..0..0
..0..1..0..0..0..0....0..1..1..1..0..0....0..1..0..0..1..0....0..1..0..0..0..0
..0..0..1..0..0..0....0..0..0..0..0..0....0..0..1..0..0..0....0..0..1..0..0..0
..0..0..0..1..0..0....0..0..0..0..0..0....3..0..2..0..3..0....2..1..0..0..0..3
..0..0..0..0..0..0....0..0..3..1..1..0....0..0..0..0..0..0....0..0..2..0..0..1
..0..0..0..0..1..1....0..0..1..0..0..1....0..0..0..0..0..1....0..0..0..0..0..1
		
Showing 1-3 of 3 results.