cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224145 Number of n X 7 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

29, 239, 1037, 3296, 8838, 21183, 46586, 95455, 184222, 337727, 592178, 998751, 1627894, 2574399, 3963306, 5956703, 8761486, 12638143, 17910626, 24977375, 34323558, 46534591, 62311002, 82484703, 108036734, 140116543, 180062866
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2013

Keywords

Comments

Column 7 of A224146.

Examples

			Some solutions for n=3:
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0
..0..0..1..1..1..1..0....0..0..1..0..0..0..0....0..0..0..1..1..1..0
..0..0..1..1..1..1..1....0..0..1..0..0..0..0....0..0..0..1..1..1..1
		

Crossrefs

Cf. A224146.

Formula

Empirical: a(n) = (4/315)*n^7 + (4/45)*n^6 + (34/45)*n^5 + (29/9)*n^4 + (508/45)*n^3 + (1156/45)*n^2 + (1328/35)*n - 161 for n>4.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(29 + 7*x - 63*x^2 + 68*x^3 + 152*x^4 - 199*x^5 + 28*x^6 + 71*x^7 - 21*x^8 - 12*x^9 + 3*x^10 + x^11) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>12.
(End)