A224145 Number of n X 7 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
29, 239, 1037, 3296, 8838, 21183, 46586, 95455, 184222, 337727, 592178, 998751, 1627894, 2574399, 3963306, 5956703, 8761486, 12638143, 17910626, 24977375, 34323558, 46534591, 62311002, 82484703, 108036734, 140116543, 180062866
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0 ..0..0..1..1..1..1..0....0..0..1..0..0..0..0....0..0..0..1..1..1..0 ..0..0..1..1..1..1..1....0..0..1..0..0..0..0....0..0..0..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224146.
Formula
Empirical: a(n) = (4/315)*n^7 + (4/45)*n^6 + (34/45)*n^5 + (29/9)*n^4 + (508/45)*n^3 + (1156/45)*n^2 + (1328/35)*n - 161 for n>4.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(29 + 7*x - 63*x^2 + 68*x^3 + 152*x^4 - 199*x^5 + 28*x^6 + 71*x^7 - 21*x^8 - 12*x^9 + 3*x^10 + x^11) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>12.
(End)
Comments