cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A224140 Number of n X n 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

2, 9, 49, 272, 1509, 8375, 46586, 259927, 1454873, 8167578, 45975525, 259412481, 1466771294, 8308711329, 47142516717, 267868554552, 1524033271457, 8681096155047, 49500982033342, 282533898125471, 1614019099745197
Offset: 1

Views

Author

R. H. Hardin Mar 31 2013

Keywords

Comments

Diagonal of A224146

Examples

			Some solutions for n=3
..1..1..1....0..1..0....0..1..1....1..0..0....0..0..0....0..0..0....0..0..0
..1..1..1....0..1..0....0..1..1....1..0..0....0..0..0....1..1..0....0..0..0
..1..1..1....0..1..1....0..1..1....1..1..0....1..1..1....1..1..1....0..0..0
		

A224141 Number of n X 3 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

7, 22, 49, 92, 155, 242, 357, 504, 687, 910, 1177, 1492, 1859, 2282, 2765, 3312, 3927, 4614, 5377, 6220, 7147, 8162, 9269, 10472, 11775, 13182, 14697, 16324, 18067, 19930, 21917, 24032, 26279, 28662, 31185, 33852, 36667, 39634, 42757, 46040, 49487, 53102
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2013

Keywords

Comments

Column 3 of A224146.

Examples

			Some solutions for n=3:
..0..0..0....0..0..0....0..1..1....0..1..0....0..0..1....0..1..0....0..0..1
..0..0..0....0..0..0....1..1..1....0..1..1....0..0..1....0..1..0....1..1..1
..0..0..1....1..1..1....1..1..1....1..1..1....0..1..1....0..1..0....1..1..1
		

Crossrefs

Cf. A224146.

Formula

Empirical: a(n) = (2/3)*n^3 + 2*n^2 + (13/3)*n.
Conjectures from Colin Barker, Aug 27 2018: (Start)
G.f.: x*(7 - 6*x + 3*x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)

A224142 Number of n X 4 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

11, 46, 124, 272, 526, 930, 1536, 2404, 3602, 5206, 7300, 9976, 13334, 17482, 22536, 28620, 35866, 44414, 54412, 66016, 79390, 94706, 112144, 131892, 154146, 179110, 206996, 238024, 272422, 310426, 352280, 398236, 448554, 503502, 563356, 628400
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2013

Keywords

Comments

Column 4 of A224146.

Examples

			Some solutions for n=3:
..0..1..0..0....0..0..0..0....0..0..0..0....0..0..1..0....1..1..1..0
..0..1..1..0....0..1..0..0....1..1..1..0....0..0..1..1....1..1..1..1
..0..1..1..0....1..1..0..0....1..1..1..1....0..1..1..1....1..1..1..1
		

Crossrefs

Cf. A224146.

Formula

Empirical: a(n) = (1/3)*n^4 + (4/3)*n^3 + (14/3)*n^2 + (23/3)*n - 4 for n>1.
Conjectures from Colin Barker, Aug 27 2018: (Start)
G.f.: x*(11 - 9*x + 4*x^2 + 2*x^3 + x^4 - x^5) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>6.
(End)

A224143 Number of n X 5 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

16, 86, 275, 691, 1509, 2985, 5471, 9431, 15457, 24285, 36811, 54107, 77437, 108273, 148311, 199487, 263993, 344293, 443139, 563587, 709013, 883129, 1089999, 1334055, 1620113, 1953389, 2339515, 2784555, 3295021, 3877889, 4540615, 5291151, 6137961
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2013

Keywords

Comments

Column 5 of A224146.

Examples

			Some solutions for n=3:
..0..0..1..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..1
..0..1..1..0..0....0..0..1..0..0....0..0..1..0..0....1..1..1..1..1
..1..1..1..1..1....0..1..1..1..0....0..1..1..0..0....1..1..1..1..1
		

Crossrefs

Cf. A224146.

Formula

Empirical: a(n) = (2/15)*n^5 + (2/3)*n^4 + (10/3)*n^3 + (25/3)*n^2 + (203/15)*n - 17 for n>2.
Conjectures from Colin Barker, Aug 27 2018: (Start)
G.f.: x*(16 - 10*x - x^2 + 11*x^3 + 8*x^4 - 10*x^5 + x^6 + x^7) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>8.
(End)

A224144 Number of n X 6 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

22, 148, 554, 1573, 3827, 8375, 16885, 31841, 56783, 96579, 157729, 248701, 380299, 566063, 822701, 1170553, 1634087, 2242427, 3029913, 4036693, 5309347, 6901543, 8874725, 11298833, 14253055, 17826611, 22119569, 27243693, 33323323, 40496287
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2013

Keywords

Comments

Column 6 of A224146.

Examples

			Some solutions for n=3:
..0..1..0..0..0..0....0..0..0..1..0..0....0..0..0..1..0..0....1..0..0..0..0..0
..0..1..0..0..0..0....0..0..1..1..1..0....0..0..1..1..0..0....1..1..1..1..0..0
..0..1..1..0..0..0....0..0..1..1..1..0....1..1..1..1..1..1....1..1..1..1..1..0
		

Crossrefs

Cf. A224146.

Formula

Empirical: a(n) = (2/45)*n^6 + (4/15)*n^5 + (16/9)*n^4 + 6*n^3 + (683/45)*n^2 + (341/15)*n - 55 for n>3.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(22 - 6*x - 20*x^2 + 33*x^3 + 40*x^4 - 53*x^5 + 8*x^6 + 11*x^7 - 2*x^8 - x^9) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>10.
(End)

A224145 Number of n X 7 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

29, 239, 1037, 3296, 8838, 21183, 46586, 95455, 184222, 337727, 592178, 998751, 1627894, 2574399, 3963306, 5956703, 8761486, 12638143, 17910626, 24977375, 34323558, 46534591, 62311002, 82484703, 108036734, 140116543, 180062866
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2013

Keywords

Comments

Column 7 of A224146.

Examples

			Some solutions for n=3:
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0
..0..0..1..1..1..1..0....0..0..1..0..0..0..0....0..0..0..1..1..1..0
..0..0..1..1..1..1..1....0..0..1..0..0..0..0....0..0..0..1..1..1..1
		

Crossrefs

Cf. A224146.

Formula

Empirical: a(n) = (4/315)*n^7 + (4/45)*n^6 + (34/45)*n^5 + (29/9)*n^4 + (508/45)*n^3 + (1156/45)*n^2 + (1328/35)*n - 161 for n>4.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(29 + 7*x - 63*x^2 + 68*x^3 + 152*x^4 - 199*x^5 + 28*x^6 + 71*x^7 - 21*x^8 - 12*x^9 + 3*x^10 + x^11) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>12.
(End)

A224147 Number of 3 X n 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

4, 16, 49, 124, 275, 554, 1037, 1831, 3082, 4984, 7789, 11818, 17473, 25250, 35753, 49709, 67984, 91600, 121753, 159832, 207439, 266410, 338837, 427091, 533846, 662104, 815221, 996934, 1211389, 1463170, 1757329, 2099417, 2495516, 2952272
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2013

Keywords

Comments

Row 3 of A224146.

Examples

			Some solutions for n=3:
..0..0..0....0..0..0....0..0..1....0..1..0....0..0..0....0..0..0....0..0..0
..0..1..1....0..0..0....0..0..1....0..1..0....0..0..1....1..0..0....1..1..1
..1..1..1....0..0..0....0..1..1....0..1..0....0..0..1....1..1..0....1..1..1
		

Crossrefs

Cf. A224146.

Formula

Empirical: a(n) = (1/720)*n^6 + (1/80)*n^5 + (23/144)*n^4 + (29/48)*n^3 + (241/180)*n^2 + (53/60)*n + 1.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(4 - 12*x + 21*x^2 - 23*x^3 + 16*x^4 - 6*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A224148 Number of 4 X n 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

5, 25, 92, 272, 691, 1573, 3296, 6472, 12058, 21506, 36961, 61517, 99542, 157084, 242371, 366419, 543763, 793327, 1139450, 1613086, 2253197, 3108359, 4238602, 5717506, 7634576, 10097920, 13237255, 17207267, 22191352, 28405766, 36104213
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2013

Keywords

Comments

Row 4 of A224146.

Examples

			Some solutions for n=3:
..0..0..0....1..0..0....0..0..0....0..0..0....1..1..0....0..0..0....0..1..0
..0..0..0....1..0..0....0..1..0....1..1..1....1..1..0....0..1..0....0..1..0
..0..0..1....1..0..0....0..1..0....1..1..1....1..1..1....0..1..0....0..1..0
..0..0..1....1..0..0....0..1..0....1..1..1....1..1..1....0..1..1....1..1..1
		

Crossrefs

Cf. A224146.

Formula

Empirical: a(n) = (1/40320)*n^8 + (1/3360)*n^7 + (1/192)*n^6 + (1/16)*n^5 + (223/640)*n^4 + (149/160)*n^3 + (3319/2016)*n^2 + (169/168)*n + 1.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(5 - 20*x + 47*x^2 - 76*x^3 + 85*x^4 - 62*x^5 + 29*x^6 - 8*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)

A224149 Number of 5 X n 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

6, 36, 155, 526, 1509, 3827, 8838, 18969, 38392, 74053, 137204, 245636, 426869, 722624, 1194983, 1934737, 3072530, 4793530, 7356497, 11118274, 16564901, 24350745, 35347252, 50703161, 71918276, 100933171, 140237506, 192999960
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2013

Keywords

Comments

Row 5 of A224146.

Examples

			Some solutions for n=3:
..0..1..0....0..0..0....0..1..0....0..0..0....0..0..0....0..0..1....0..0..0
..1..1..0....0..0..0....0..1..0....0..1..0....0..1..0....0..0..1....1..0..0
..1..1..1....0..1..0....0..1..0....0..1..1....1..1..0....0..1..1....1..1..0
..1..1..1....0..1..0....0..1..0....1..1..1....1..1..0....0..1..1....1..1..0
..1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....0..1..1....1..1..1
		

Crossrefs

Cf. A224146.

Formula

Empirical: a(n) = (1/3628800)*n^10 + (1/241920)*n^9 + (11/120960)*n^8 + (59/40320)*n^7 + (3853/172800)*n^6 + (181/1280)*n^5 + (100381/181440)*n^4 + (76319/60480)*n^3 + (24247/12600)*n^2 + (23/21)*n + 1.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(6 - 30*x + 89*x^2 - 189*x^3 + 288*x^4 - 309*x^5 + 236*x^6 - 127*x^7 + 46*x^8 - 10*x^9 + x^10) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)

A224150 Number of 6 X n 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

7, 49, 242, 930, 2985, 8375, 21183, 49365, 107697, 222603, 439909, 837071, 1542126, 2762572, 4828665, 8257309, 13844903, 22800305, 36932600, 58912756, 92633675, 143699769, 220085207, 333009601, 498091361, 736852507, 1078664659, 1563244537
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2013

Keywords

Comments

Row 6 of A224146.

Examples

			Some solutions for n=3:
..0..0..0....0..0..0....0..1..0....0..0..0....1..0..0....0..0..0....0..0..1
..0..0..0....0..0..0....1..1..0....0..0..0....1..0..0....0..0..0....0..0..1
..1..1..0....0..0..1....1..1..0....0..1..0....1..0..0....1..0..0....0..0..1
..1..1..0....0..1..1....1..1..0....0..1..0....1..1..1....1..0..0....0..0..1
..1..1..0....0..1..1....1..1..1....0..1..0....1..1..1....1..1..0....0..1..1
..1..1..1....0..1..1....1..1..1....1..1..0....1..1..1....1..1..0....1..1..1
		

Crossrefs

Cf. A224146.

Formula

Empirical: a(n) = (1/479001600)*n^12 + (1/26611200)*n^11 + (43/43545600)*n^10 + (29/1451520)*n^9 + (5671/14515200)*n^8 + (2219/345600)*n^7 + (2174569/43545600)*n^6 + (116341/483840)*n^5 + (8531549/10886400)*n^4 + (2862857/1814400)*n^3 + (3602461/1663200)*n^2 + (2327/1980)*n + 1.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(7 - 42*x + 151*x^2 - 396*x^3 + 762*x^4 - 1076*x^5 + 1137*x^6 - 906*x^7 + 538*x^8 - 230*x^9 + 67*x^10 - 12*x^11 + x^12) / (1 - x)^13.
a(n) = 13*a(n-1) - 78*a(n-2) + 286*a(n-3) - 715*a(n-4) + 1287*a(n-5) - 1716*a(n-6) + 1716*a(n-7) - 1287*a(n-8) + 715*a(n-9) - 286*a(n-10) + 78*a(n-11) - 13*a(n-12) + a(n-13) for n>13.
(End)
Showing 1-10 of 11 results. Next