cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A224152 Number of n X n 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

2, 12, 89, 574, 3469, 20065, 114537, 650819, 3705824, 21181267, 121617211, 701255335, 4058735341, 23565789117, 137190976378, 800437914689, 4678794395883, 27391873966579, 160581355210547, 942493889605853
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2013

Keywords

Comments

Diagonal of A224158.

Examples

			Some solutions for n=3
..0..0..0....1..1..0....1..0..0....0..0..0....1..1..0....0..1..0....0..0..0
..0..0..0....1..1..0....0..1..0....0..0..0....1..0..0....1..1..1....0..1..0
..1..0..0....1..0..0....1..0..0....0..0..1....0..1..0....1..1..1....1..0..0
		

Crossrefs

Cf. A224158.

A224153 Number of n X 3 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

7, 28, 89, 281, 900, 2935, 9681, 32020, 105937, 350311, 1157860, 3826287, 12643725, 41780500, 138063433, 456233915, 1507641652, 4982061047, 16463412165, 54403960596, 179779885769, 594089193379, 1963189403076, 6487431018743
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2013

Keywords

Comments

Column 3 of A224158.

Examples

			Some solutions for n=3:
..0..1..0....0..0..0....0..0..0....1..0..0....0..0..0....0..0..0....0..1..0
..1..1..1....1..0..0....1..1..0....0..1..1....1..0..0....1..1..1....1..1..0
..1..1..1....1..1..1....1..1..0....1..1..0....0..1..0....1..1..1....1..0..0
		

Crossrefs

Cf. A224158.

Formula

Empirical: a(n) = 4*a(n-1) - 2*a(n-2) - a(n-3) - 4*a(n-4) + 14*a(n-5) - 2*a(n-6) - 2*a(n-9).
Empirical g.f.: x*(7 - 9*x^2 - 12*x^3 + 10*x^4 - 2*x^8) / (1 - 4*x + 2*x^2 + x^3 + 4*x^4 - 14*x^5 + 2*x^6 + 2*x^9). - Colin Barker, Aug 28 2018

A224154 Number of nX4 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

11, 56, 187, 574, 1783, 5657, 18408, 61140, 205390, 694018, 2350061, 7961090, 26964678, 91303265, 309082754, 1046163241, 3540718751, 11983122960, 40555030532, 137252283821, 464510611475, 1572073476421, 5320479934245
Offset: 1

Views

Author

R. H. Hardin Mar 31 2013

Keywords

Comments

Column 4 of A224158

Examples

			Some solutions for n=3
..0..0..0..0....1..1..0..0....1..1..1..0....1..1..1..1....0..1..0..0
..1..0..0..0....1..1..0..0....1..1..0..0....1..1..1..1....1..1..1..0
..1..1..1..1....1..1..1..0....1..1..1..0....1..1..1..0....1..1..0..0
		

Formula

Empirical: a(n) = 5*a(n-1) -5*a(n-2) -2*a(n-3) -3*a(n-4) +18*a(n-5) -18*a(n-6) +27*a(n-7) -3*a(n-8) -4*a(n-9) -8*a(n-11) -6*a(n-12) -6*a(n-13) for n>14

A224155 Number of nX5 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

16, 101, 373, 1156, 3469, 10562, 32910, 105020, 342575, 1136503, 3815322, 12904448, 43836891, 149266926, 508857756, 1735637682, 5921189882, 20201365165, 68920464104, 235127759007, 802136163910, 2736424196762, 9334965911219
Offset: 1

Views

Author

R. H. Hardin Mar 31 2013

Keywords

Comments

Column 5 of A224158

Examples

			Some solutions for n=3
..1..1..0..0..0....1..0..0..0..0....1..0..0..0..0....0..1..0..0..0
..1..1..1..0..0....0..0..0..0..0....0..1..0..0..0....1..1..1..0..0
..1..1..1..1..1....0..0..0..1..0....1..0..0..0..0....1..1..0..0..0
		

Formula

Empirical: a(n) = 6*a(n-1) -9*a(n-2) -a(n-3) +a(n-4) +23*a(n-5) -38*a(n-6) +42*a(n-7) -41*a(n-8) +89*a(n-9) -67*a(n-10) -9*a(n-11) +5*a(n-12) -32*a(n-13) -50*a(n-14) -12*a(n-15) -58*a(n-16) -28*a(n-17) +12*a(n-18) +4*a(n-20) for n>22

A224156 Number of nX6 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

22, 169, 702, 2271, 6786, 20065, 60214, 184233, 575410, 1833641, 5947567, 19579806, 65205152, 219009930, 740080588, 2511332286, 8545644419, 29133026750, 99436525669, 339656225391, 1160767044395, 3968114261421, 13567722769117
Offset: 1

Views

Author

R. H. Hardin Mar 31 2013

Keywords

Comments

Column 6 of A224158

Examples

			Some solutions for n=3
..0..0..0..1..1..0....0..0..0..0..0..0....1..0..0..0..0..0....0..0..0..1..0..0
..0..0..1..1..1..0....0..0..1..1..1..1....0..0..0..0..0..0....1..1..1..1..0..0
..0..1..1..1..0..0....1..1..1..1..1..1....0..0..0..0..1..0....1..1..1..0..0..0
		

Formula

Empirical: a(n) = 7*a(n-1) -14*a(n-2) +3*a(n-3) +7*a(n-4) +24*a(n-5) -58*a(n-6) +62*a(n-7) -67*a(n-8) +112*a(n-9) -164*a(n-10) +193*a(n-11) -92*a(n-12) -46*a(n-13) +22*a(n-14) -60*a(n-15) -144*a(n-16) +42*a(n-17) -254*a(n-18) -28*a(n-19) -120*a(n-20) -72*a(n-21) +36*a(n-22) -4*a(n-23) +12*a(n-24) for n>27

A224157 Number of nX7 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

29, 267, 1252, 4339, 13283, 39037, 114537, 340134, 1025559, 3143071, 9794989, 31018972, 99708260, 324764638, 1069736878, 3556096357, 11908005965, 40101772888, 135631552056, 460218357877, 1565350043268, 5333698073679
Offset: 1

Views

Author

R. H. Hardin Mar 31 2013

Keywords

Comments

Column 7 of A224158

Examples

			Some solutions for n=3
..1..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..1..1
..0..1..0..0..0..0..0....0..0..0..0..0..1..0....0..0..0..1..1..1..1
..1..1..1..1..0..0..0....1..1..1..1..1..0..0....0..0..1..1..1..1..1
		

Formula

Empirical: a(n) = 8*a(n-1) -20*a(n-2) +11*a(n-3) +13*a(n-4) +18*a(n-5) -83*a(n-6) +98*a(n-7) -99*a(n-8) +159*a(n-9) -264*a(n-10) +312*a(n-11) -324*a(n-12) +647*a(n-13) -757*a(n-14) +88*a(n-15) +283*a(n-16) -257*a(n-17) -451*a(n-18) +365*a(n-19) -1074*a(n-20) +477*a(n-21) -1092*a(n-22) +258*a(n-23) -916*a(n-24) -142*a(n-25) +114*a(n-26) +202*a(n-27) +118*a(n-28) -56*a(n-29) +56*a(n-30) -24*a(n-31) +8*a(n-32) -8*a(n-33) for n>37

A224159 Number of 3 X n 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

8, 36, 89, 187, 373, 702, 1252, 2130, 3479, 5486, 8391, 12497, 18181, 25906, 36234, 49840, 67527, 90242, 119093, 155367, 200549, 256342, 324688, 407790, 508135, 628518, 772067, 942269, 1142997, 1378538, 1653622, 1973452, 2343735, 2770714
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2013

Keywords

Comments

Row 3 of A224158.

Examples

			Some solutions for n=3:
..0..0..1....0..0..1....0..0..0....0..1..0....1..0..0....0..1..1....1..1..0
..1..1..0....1..1..0....0..0..0....1..0..0....0..1..0....1..1..1....1..0..0
..1..1..1....1..1..0....1..0..0....0..1..0....1..0..0....1..1..0....1..1..0
		

Crossrefs

Cf. A224158.

Formula

Empirical: a(n) = (1/720)*n^6 + (1/240)*n^5 + (47/144)*n^4 - (3/16)*n^3 + (1111/180)*n^2 - (199/60)*n + 20 for n>2.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(8 - 20*x + 5*x^2 + 40*x^3 - 47*x^4 - 5*x^5 + 41*x^6 - 27*x^7 + 6*x^8) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>9.
(End)

A224160 Number of 4 X n 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

16, 108, 281, 574, 1156, 2271, 4339, 8008, 14257, 24519, 40840, 66082, 104179, 160456, 242022, 358249, 521350, 747070, 1055505, 1472065, 2028598, 2764693, 3729181, 4981854, 6595423, 8657737, 11274286, 14571012, 18697453, 23830246
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2013

Keywords

Comments

Row 4 of A224158.

Examples

			Some solutions for n=3:
..1..1..0....1..1..0....1..1..0....0..0..0....1..1..1....0..0..1....0..0..1
..1..1..0....1..1..1....1..1..1....0..0..0....1..1..1....0..1..0....0..1..1
..1..1..0....1..1..1....1..1..0....1..1..0....1..1..1....1..1..1....1..1..0
..1..0..0....1..1..0....1..1..0....1..1..1....1..1..0....1..1..1....1..1..0
		

Crossrefs

Cf. A224158.

Formula

Empirical: a(n) = (1/40320)*n^8 - (1/10080)*n^7 + (31/2880)*n^6 + (43/720)*n^5 + (3527/5760)*n^4 - (5947/1440)*n^3 + (548119/10080)*n^2 - (119221/840)*n + 283 for n>4.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(16 - 36*x - 115*x^2 + 589*x^3 - 950*x^4 + 519*x^5 + 442*x^6 - 977*x^7 + 817*x^8 - 436*x^9 + 178*x^10 - 55*x^11 + 9*x^12) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>13.
(End)

A224161 Number of 5Xn 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

32, 324, 900, 1783, 3469, 6786, 13283, 25624, 48339, 88755, 158358, 274636, 463580, 763045, 1227226, 1932567, 2985495, 4532457, 6772837, 9975443, 14499382, 20820285, 29563005, 41542090, 57811531, 79725503, 109012056, 147861974
Offset: 1

Views

Author

R. H. Hardin Mar 31 2013

Keywords

Comments

Row 5 of A224158

Examples

			Some solutions for n=3
..0..0..0....0..1..0....0..0..0....1..1..0....0..1..1....0..0..1....0..1..0
..0..0..0....1..0..0....0..0..1....1..0..0....1..1..0....0..1..0....1..0..0
..1..1..0....0..0..0....1..1..0....0..0..0....1..1..0....1..0..0....0..1..1
..1..1..1....1..0..0....1..0..0....0..1..0....1..0..0....0..1..0....1..1..0
..1..1..1....1..0..0....1..0..0....1..1..1....1..0..0....1..1..0....1..0..0
		

Formula

Empirical: a(n) = (1/3628800)*n^10 - (1/241920)*n^9 + (13/60480)*n^8 - (1/2688)*n^7 + (15793/172800)*n^6 - (10013/11520)*n^5 + (3158927/362880)*n^4 - (461413/12096)*n^3 + (13189843/50400)*n^2 - (797567/840)*n + 2301 for n>6

A224162 Number of 6Xn 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

64, 972, 2935, 5657, 10562, 20065, 39037, 76393, 148637, 284937, 535211, 981957, 1757541, 3068802, 5231637, 8719051, 14227266, 22765909, 35780116, 55314683, 84233265, 126509183, 187608775, 274993564, 398773975, 572555093, 814524213
Offset: 1

Views

Author

R. H. Hardin Mar 31 2013

Keywords

Comments

Row 6 of A224158

Examples

			Some solutions for n=3
..0..0..1....1..1..0....0..0..1....0..0..1....1..0..0....1..0..0....0..0..0
..0..1..0....1..0..0....1..1..0....0..1..0....0..0..0....0..1..0....1..0..0
..1..0..0....1..0..0....1..0..0....1..0..0....0..0..0....1..0..0....0..0..1
..0..1..1....1..1..0....1..0..0....1..1..1....0..1..0....1..1..0....0..1..0
..1..1..1....1..1..0....0..0..0....1..1..1....1..1..0....1..1..1....1..0..0
..1..1..1....1..1..1....0..1..0....1..1..1....1..0..0....1..1..0....1..1..0
		

Formula

Empirical: a(n) = (1/479001600)*n^12 - (1/15966720)*n^11 + (127/43545600)*n^10 - (7/207360)*n^9 + (4033/2073600)*n^8 - (5443/483840)*n^7 + (13552621/43545600)*n^6 - (8448991/1451520)*n^5 + (1032695879/10886400)*n^4 - (8305531/10368)*n^3 + (67691137/14850)*n^2 - (80407927/5544)*n + 24225 for n>8
Showing 1-10 of 11 results. Next