A224159 Number of 3 X n 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.
8, 36, 89, 187, 373, 702, 1252, 2130, 3479, 5486, 8391, 12497, 18181, 25906, 36234, 49840, 67527, 90242, 119093, 155367, 200549, 256342, 324688, 407790, 508135, 628518, 772067, 942269, 1142997, 1378538, 1653622, 1973452, 2343735, 2770714
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..1....0..0..1....0..0..0....0..1..0....1..0..0....0..1..1....1..1..0 ..1..1..0....1..1..0....0..0..0....1..0..0....0..1..0....1..1..1....1..0..0 ..1..1..1....1..1..0....1..0..0....0..1..0....1..0..0....1..1..0....1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224158.
Formula
Empirical: a(n) = (1/720)*n^6 + (1/240)*n^5 + (47/144)*n^4 - (3/16)*n^3 + (1111/180)*n^2 - (199/60)*n + 20 for n>2.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(8 - 20*x + 5*x^2 + 40*x^3 - 47*x^4 - 5*x^5 + 41*x^6 - 27*x^7 + 6*x^8) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>9.
(End)
Comments