A224160 Number of 4 X n 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.
16, 108, 281, 574, 1156, 2271, 4339, 8008, 14257, 24519, 40840, 66082, 104179, 160456, 242022, 358249, 521350, 747070, 1055505, 1472065, 2028598, 2764693, 3729181, 4981854, 6595423, 8657737, 11274286, 14571012, 18697453, 23830246
Offset: 1
Keywords
Examples
Some solutions for n=3: ..1..1..0....1..1..0....1..1..0....0..0..0....1..1..1....0..0..1....0..0..1 ..1..1..0....1..1..1....1..1..1....0..0..0....1..1..1....0..1..0....0..1..1 ..1..1..0....1..1..1....1..1..0....1..1..0....1..1..1....1..1..1....1..1..0 ..1..0..0....1..1..0....1..1..0....1..1..1....1..1..0....1..1..1....1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224158.
Formula
Empirical: a(n) = (1/40320)*n^8 - (1/10080)*n^7 + (31/2880)*n^6 + (43/720)*n^5 + (3527/5760)*n^4 - (5947/1440)*n^3 + (548119/10080)*n^2 - (119221/840)*n + 283 for n>4.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(16 - 36*x - 115*x^2 + 589*x^3 - 950*x^4 + 519*x^5 + 442*x^6 - 977*x^7 + 817*x^8 - 436*x^9 + 178*x^10 - 55*x^11 + 9*x^12) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>13.
(End)
Comments