cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224160 Number of 4 X n 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

16, 108, 281, 574, 1156, 2271, 4339, 8008, 14257, 24519, 40840, 66082, 104179, 160456, 242022, 358249, 521350, 747070, 1055505, 1472065, 2028598, 2764693, 3729181, 4981854, 6595423, 8657737, 11274286, 14571012, 18697453, 23830246
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2013

Keywords

Comments

Row 4 of A224158.

Examples

			Some solutions for n=3:
..1..1..0....1..1..0....1..1..0....0..0..0....1..1..1....0..0..1....0..0..1
..1..1..0....1..1..1....1..1..1....0..0..0....1..1..1....0..1..0....0..1..1
..1..1..0....1..1..1....1..1..0....1..1..0....1..1..1....1..1..1....1..1..0
..1..0..0....1..1..0....1..1..0....1..1..1....1..1..0....1..1..1....1..1..0
		

Crossrefs

Cf. A224158.

Formula

Empirical: a(n) = (1/40320)*n^8 - (1/10080)*n^7 + (31/2880)*n^6 + (43/720)*n^5 + (3527/5760)*n^4 - (5947/1440)*n^3 + (548119/10080)*n^2 - (119221/840)*n + 283 for n>4.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(16 - 36*x - 115*x^2 + 589*x^3 - 950*x^4 + 519*x^5 + 442*x^6 - 977*x^7 + 817*x^8 - 436*x^9 + 178*x^10 - 55*x^11 + 9*x^12) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>13.
(End)