A224162 Number of 6Xn 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.
64, 972, 2935, 5657, 10562, 20065, 39037, 76393, 148637, 284937, 535211, 981957, 1757541, 3068802, 5231637, 8719051, 14227266, 22765909, 35780116, 55314683, 84233265, 126509183, 187608775, 274993564, 398773975, 572555093, 814524213
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..1....1..1..0....0..0..1....0..0..1....1..0..0....1..0..0....0..0..0 ..0..1..0....1..0..0....1..1..0....0..1..0....0..0..0....0..1..0....1..0..0 ..1..0..0....1..0..0....1..0..0....1..0..0....0..0..0....1..0..0....0..0..1 ..0..1..1....1..1..0....1..0..0....1..1..1....0..1..0....1..1..0....0..1..0 ..1..1..1....1..1..0....0..0..0....1..1..1....1..1..0....1..1..1....1..0..0 ..1..1..1....1..1..1....0..1..0....1..1..1....1..0..0....1..1..0....1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/479001600)*n^12 - (1/15966720)*n^11 + (127/43545600)*n^10 - (7/207360)*n^9 + (4033/2073600)*n^8 - (5443/483840)*n^7 + (13552621/43545600)*n^6 - (8448991/1451520)*n^5 + (1032695879/10886400)*n^4 - (8305531/10368)*n^3 + (67691137/14850)*n^2 - (80407927/5544)*n + 24225 for n>8
Comments