A224186 Number of n X 4 0..2 arrays with rows unimodal and columns nondecreasing.
46, 548, 3526, 15779, 55438, 163746, 424326, 992607, 2138488, 4305730, 8191976, 14853709, 25840868, 43366252, 70515252, 111501861, 171977322, 259398184, 383460946, 556610879, 794633026, 1117333790, 1549321930, 2120898195
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..1..0..0....1..1..1..1....2..1..0..0....0..1..2..0....0..1..0..0 ..1..1..0..0....1..1..1..1....2..1..1..0....0..2..2..0....0..1..1..0 ..1..2..0..0....1..1..1..1....2..2..1..1....0..2..2..0....1..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224190.
Formula
Empirical: a(n) = (41/4032)*n^8 + (55/336)*n^7 + (179/160)*n^6 + (169/40)*n^5 + (615/64)*n^4 + (215/16)*n^3 + (56759/5040)*n^2 + (2173/420)*n + 1.
Conjectures from Colin Barker, Aug 29 2018: (Start)
G.f.: x*(46 + 134*x + 250*x^2 - 91*x^3 + 127*x^4 - 84*x^5 + 36*x^6 - 9*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
Comments