A224192 Number of 5Xn 0..2 arrays with rows unimodal and columns nondecreasing.
21, 441, 5852, 55438, 408222, 2469182, 12741432, 57644194, 233385140, 859145920, 2912085006, 9181289736, 27151590510, 75840301088, 201262238349, 509972027785, 1239109721281, 2897739996141, 6543276177902, 14306873805792, 30366198279340
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..2..0....0..1..0....0..1..0....0..0..0....0..2..1....0..0..2....1..1..0 ..1..2..0....1..1..1....0..1..0....0..0..0....0..2..1....0..1..2....1..1..0 ..2..2..0....2..1..1....0..1..2....1..2..1....0..2..1....1..2..2....2..2..0 ..2..2..1....2..2..1....0..2..2....1..2..1....1..2..2....1..2..2....2..2..1 ..2..2..2....2..2..2....1..2..2....2..2..2....1..2..2....2..2..2....2..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/1379196149760000)*n^20 + (1/12538146816000)*n^19 + (467/101624979456000)*n^18 + (223/1302884352000)*n^17 + (9641/2134978560000)*n^16 + (44237/498161664000)*n^15 + (115879/86102016000)*n^14 + (24029081/1494484992000)*n^13 + (623419/4055040000)*n^12 + (18199033/15328051200)*n^11 + (3421967251/459841536000)*n^10 + (263944057/6967296000)*n^9 + (8168948285977/52306974720000)*n^8 + (193145489021/373621248000)*n^7 + (507138710909/373621248000)*n^6 + (13262560631/4790016000)*n^5 + (3783062210933/882161280000)*n^4 + (108121887773/22054032000)*n^3 + (27314271011/6518191680)*n^2 + (14737223/8314020)*n + 1
Comments