cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224193 Number of 6Xn 0..2 arrays with rows unimodal and columns nondecreasing.

This page as a plain text file.
%I A224193 #6 Jul 23 2025 05:02:18
%S A224193 28,784,13524,163746,1519738,11444292,72710554,400958714,1960596602,
%T A224193 8643660124,34817290272,129528551708,449030731802,1461369918218,
%U A224193 4493166765659,13121663640985,36566337458326,97628603745396
%N A224193 Number of 6Xn 0..2 arrays with rows unimodal and columns nondecreasing.
%C A224193 Row 6 of A224190
%H A224193 R. H. Hardin, <a href="/A224193/b224193.txt">Table of n, a(n) for n = 1..210</a>
%F A224193 Empirical: a(n) = (1/35608838483312640000)*n^24 + (1/228261785149440000)*n^23 + (2993/8515157028618240000)*n^22 + (1189/64508765368320000)*n^21 + (112787/162193467211776000)*n^20 + (4033303/202741834014720000)*n^19 + (100023181/224083079700480000)*n^18 + (75069509/9336794987520000)*n^17 + (1246517053/10545086103552000)*n^16 + (6306246257/4393785876480000)*n^15 + (18213412351/1255367393280000)*n^14 + (38516770459/313841848320000)*n^13 + (9185104716379/10545086103552000)*n^12 + (1753572682469/337983528960000)*n^11 + (42653443424521/1647669703680000)*n^10 + (118327836601829/1098446469120000)*n^9 + (1768182454793/4763670912000)*n^8 + (698418986666497/666913927680000)*n^7 + (26428459959973901/11087444047680000)*n^6 + (31671555902461499/7391629365120000)*n^5 + (14625059352544909/2463876455040000)*n^4 + (438413487383/71292721500)*n^3 + (10755031442327/2248776129600)*n^2 + (2550558151/1338557220)*n + 1
%e A224193 Some solutions for n=3
%e A224193 ..0..1..1....0..1..0....0..0..0....0..1..1....0..0..0....0..0..0....0..1..0
%e A224193 ..1..1..1....0..1..0....1..0..0....1..1..1....0..0..0....0..1..0....0..2..0
%e A224193 ..1..2..1....1..1..1....1..0..0....2..1..1....0..0..0....1..1..1....1..2..1
%e A224193 ..1..2..1....1..2..2....1..1..1....2..2..1....1..2..1....2..1..1....1..2..1
%e A224193 ..2..2..1....2..2..2....2..1..1....2..2..2....1..2..1....2..2..2....2..2..1
%e A224193 ..2..2..1....2..2..2....2..2..2....2..2..2....1..2..2....2..2..2....2..2..1
%K A224193 nonn
%O A224193 1,1
%A A224193 _R. H. Hardin_ Apr 01 2013